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Abstract. Process-based modeling is an approach to constructing ex-
planatory models of dynamical systems from knowledge and data. The
knowledge encodes information about potential processes that explain
the relationships between the observed system entities. The resulting
process-based models provide both an explanatory overview of the sys-
tem components and closed-form equations that allow for simulating
the system behavior. In this paper, we present three recent improve-
ments of the process-based approach: (i) improving predictive perfor-
mance of process-based models using ensembles, (ii) extending the scope
of process-based models towards handling uncertainty and (iii) address-
ing the task of automated process-based design.

1 Introduction

Process-based modeling (PBM) supports knowledge discovery by learning under-
standable and communicable models of dynamical systems. PBM uses domain-
specific knowledge as declarative bias in combination with observed time-series
data to address the task of modeling real-world systems. It performs both struc-
ture identification and parameter estimation, resulting in a process-based model
which specifies a set of differential equations. In turn, such models accurately
capture the complex and nonlinear behavior of a dynamical system through time.

Learning models of dynamical systems is a supervised machine learning task:
the predictive variables correspond to observed system variables, while the tar-
gets correspond to their time derivatives. However, the task bears two specific
properties that limit the use of traditional machine learning approaches. First,
the resulting models take the form of a set of entities, processes and differential
equations, i.e., artifacts used by scientists and engineers to construct explana-
tory models. On the other hand, machine learning methods operate on classes
of predictive models that generalize well over arbitrary data, while keeping the
complexity of training and evaluation procedures low. Second, the observed vari-
ables are measured at consecutive time points, so the data instances breach the
common assumption of their mutual independence.

The PBM approach relies on the paradigm of computational scientific dis-
covery [4] and more specifically, on approaches to inductive process modeling.



On one hand, research in this area has a long tradition and has been applied
to a variety of domains [1, 2, 11, 3]. However, while successful, it has been at the
margins of mainstream machine learning. On the other hand, the PBM approach
has so far focused primarily on applications within a narrow class of problems
that emphasize descriptive and deterministic models at output, given a single
data type at input. In terms of output, such models are typically simulated and
analyzed using the learning data. Therefore, they have a tendency to overfit
– rendering them incapable at accurately predicting future system’s behavior.
Also, these models do not capture the intrinsic uncertainty of the interactions
in the system. They always predict exactly the same behavior of the system
at output in a deterministic manner: determined only by initial conditions and
ignoring the uncertainty in real-world systems. In terms of input, an assumption
of the PBM is that time-series of observations are always available and sufficient.
This, however, does not hold for problems with limited observability or tasks,
such as design, where different types of input are required.

In response, our recent developments of the PBM approach have aimed at
bridging the gap between machine learning and domains of application within
physical and life sciences. We address the limitations of the PBM approach
by broadening the classes of tasks it can address. We build on the tradition
of constant performance improvement, but also extend the scope of potential
applications. In particular, to improve the performance on the task of predictive
modeling, we support the learning of different types of ensembles of process-based
models [5, 7, 6]. Next, we extended the output to include process-based models
that describe stochastic interactions [8]. Finally, in order to address tasks of
modeling dynamical systems under limited observability and tasks of design of
dynamical systems, we consider different types of input data. Namely, in addition
to time-series of observations of system variables we allow for the definition of
expected properties of the behavior of the dynamical system [9, 10].

2 Methods

The PBM learning task takes domain-specific knowledge and time-series data at
input (Figure 1). The resulting model comprises system variables represented as
entities and their interactions that define the underlying model structure rep-
resented as processes. This representation allows for straightforward mapping of
process-based models into a set of differential equations. The model parameters
are fitted to the data using evolutionary optimization methods with the sum-
of-squares loss function as the objective. The PBM approach, however, adds an
extra layer to the model equations. In particular, the models are constructed
using components from a library of domain-knowledge, represented by template
entities and processes. These templates encode taxonomies of variable and con-
stant properties of the constituents in the dynamical systems as well as the tax-
onomies of processes (interactions) among them. The (partial) instantiations of
such templates, taken from arbitrary levels of the respective taxonomies, define
and constrain the model structure search space for a specific modeling task.
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Fig. 1. General overview of the three extensions of PBM presented in this paper.

PBM has four distinguishing features. First, it produces understandable mod-
els, which give clear insight into the structure of a dynamical system building on
the traditional mathematical description. The processes relate specific parts of
the set of differential equations to understandable real world causal relations be-
tween the system’s components. Second, process-based models retain the utility
of traditional mathematical models. They can be readily simulated and analyzed
using well established numerical approaches. Third, PBM is generally applicable
to domains that require models described in terms of equations. Finally, the
PBM approach is modular. The domain-knowledge library can be instantiated
into a number of different modeling components specific to a particular model-
ing task. It captures the basic modeling principles in a given domain and can be
reused for different modeling applications within the same domain.

We report on three extensions of PBM (Figure 1). To improve the capa-
bility to predict future system’s behavior, we consider learning of ensembles of
process-based models. The constituent base process-based models are learned
either from different samples of the measured data [5], random samples of the
library of domain knowledge [7] or both [6]. Such sampling approaches have a
direct effect on the generalization ability of the ensembles, leading to improved
predictive performance. Second, the ensembles of process-based models can pro-
vide long-term predictions, relying only on the initial values of the state variables
as opposed to traditional ML ensembles (in the context of time-series) that are
typically used for short-term prediction.

To capture the intrinsic uncertainty of interactions within real world dynam-
ical systems, we propose an improved finer grained formalism for representing
domain knowledge [8]. It encodes the interactions between entities, i.e., processes
in the form of reaction equations allowing for both deterministic and stochastic
interpretation of process-based models and knowledge.

We extended the input to the PBM approach to different types of data, which
allows handling a broader set of tasks ranging from completely data-driven to
completely knowledge-driven modeling. In this context, we first strengthen the
evaluation bias of modeling tasks with limited observability [10]. We use domain-
specific criteria for model selection as part of a general regularized objective
function for parameter optimization and model selection. Second, we formulate
the novel task of process-based design of dynamical systems [9]. This approach
does not take measured data at input, but is completely based on the description
of desired properties of the behavior of a dynamical system. We further gener-
alize the task by taking advantage of methods for simultaneous optimization of



multiple conflicting objectives (desired properties of the behavior). We use the
complete information from the Pareto front of optimal solutions (obtained for
every candidate design) to rank the designs and make a well informed selection.

3 Significance and Challenges

The methodology for learning ensembles of PBMs extends the scope of the tra-
ditional ensemble paradigm in machine learning towards modeling dynamical
systems. It improves the generalization power of PBMs, providing more accurate
simulation of the future behavior of the modeled systems. The proposed method-
ology employs four different methods for constructing ensembles of process-based
models. Each of these significantly improves the predictive performance (on av-
erage up to 60% of relative improvement) over individual models on tasks of
modeling population dynamics in three lake ecosystems [5, 7, 6].

The extension of the PBM approach towards stochastic process-based mod-
els has allowed us to model dynamical systems that are out of the scope of
deterministic models. We have demonstrated that the stochastic PBM is capa-
ble of reconstructing known, manually constructed models from synthetic and
real-world data in the domains of systems biology and epidemiology [8].

The capability of PBM to handle different inputs and multiple modeling ob-
jectives has led to important contributions in the domains of systems and syn-
thetic biology. In particular, PBM can address the problem of high structural
uncertainty (many candidate model structures) and incomplete data (i.e., lim-
ited observability of the system variables). In system biology, our approach can
alleviate the model selection problem by strengthening the evaluation bias with
introducing domain-specific model selection criteria [10]. In synthetic biology,
we can now use PBM to solve the task of automated design. Our results show
that PBM is capable of reconstructing known/good designs, as well as propos-
ing novel alternative designs of a synthetic stochastic switch and a synthetic
oscillator [9].

Note, finally, that all three extensions of the PBM approach are designed
and implemented as independent modular components. Therefore, they are in-
teroperable. They can be, in principle, arbitrarily combined and applied to novel
tasks, such as learning ensembles of stochastic process-based models.

Several challenges, that we are aware of and currently working on, remain in
PBM. The exhaustive combinatorial search currently in use is computationally
inefficient and does not scale well with the number of candidate model structures.
It is therefore necessary to integrate methods for heuristic search in our current
implementation. An alternative approach to reducing search complexity is to use
higher-level constraints on model structures that are more expressive than the
current constraints. They can be based on the topological properties of the can-
didate model structures, or can define a probability distribution over the model
structures. Finally, both process-based modeling and design require further eval-
uation on other related domains, such as neurobiology, systems pharmacology



and systems medicine, or on completely new domains. The new applications will
most certainly open up new directions for improvement of the PBM approach.
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7. Simidjievski, N., Todorovski, L., Džeroski, S.: Modeling Dynamic Systems with
Efficient Ensembles of Process-Based Models. PLoS One 11(4), 1–27 (2016)
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9. Tanevski, J., Todorovski, L., Džeroski, S.: Process-based design of dynamical bio-
logical systems. Scientific Reports 6(1), 1–13 (2016)

10. Tanevski, J., Todorovski, L., Kalaidzidis, Y., Džeroski, S.: Domain-specific model
selection for structural identification of the Rab5-Rab7 dynamics in endocytosis.
BMC Systems Biology 9(1), 1–31 (2015)

11. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process
models in dynamic domains. In: Proceedings of the Twentieth National Conference
on Artificial Intelligence. pp. 892–897. AAAI Press (2005)


