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Abstract. We describe ProTraits, a machine learning pipeline that sys-
tematically annotates microbes with phenotypes using a large amount of
textual data from scienti�c literature and other online resources, as well
as genome sequencing data. Moreover, by relying on a multi-view non-
negative matrix factorization approach, ProTraits pipeline is also able to
discover novel phenotypic concepts from unstructured text. We present
the main components of the developed pipeline and outline challenges
for the application to other �elds.
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1 Introduction

With the development of next-generation DNA sequencing techniques, the num-
ber of available microbial genomes has rapidly increased. However, this explosive
growth of genomics data is not followed by the phenotypic annotations of or-
ganisms, such as growth at extreme temperatures, resistance to radiation, or the
ability to cause disease in plants, animals or humans. The systematic annotation
of organisms with phenotypic traits is of importance for discovering the asso-
ciations between genes to phenotypes that would suggest a biological basis for
various traits. Existing databases [7, 11] rely on manual annotation of organisms,
which results in limited coverage. On the other hand, there is a vast amount of
unstructured data with phenotype descriptions available in scienti�c articles and
other textual resources. Motivated by this abundance of genomic and of textual
data, we developed ProTraits [2] - a machine learning-based pipeline that system-
atically assigns predictions across large number of organisms and phenotypes.
Along with predicting existing phenotypic labels, ProTraits pipeline is also able
to de�ne novel phenotypic concepts from unstructured text using a multi-view
approach based on non-negative matrix factorization followed by clustering and
manual curation. Here, we brie�y describe main components of our pipeline and
present an overview of results. The proposed approach can easily be extended
to other �elds with the abundant unstructured textual data. The ProTraits
database of microbial phenomes is available at http://protraits.irb.hr/.



2 Methodology

In this section, we describe the main components of the ProTraits pipeline (Fig.
1): (i) unsupervised phenotype discovery based on multi-view non-negative ma-
trix factorization; (ii) a supervised machine learning framework for phenotype
inference from textual and genomic data; (iii) a late-fusion based component for
the combination of predictions coming from 11 independent models, and (iv) a
user-friendly web interface providing searchable predictions.

Fig. 1. System architecture of the ProTraits pipeline

2.1 Initial Data

Text documents describing bacterial and archaeal species were downloaded from
six textual resources including Wikipedia, the MicrobeWiki student-edited re-
source, PubMed abstracts of scienti�c publications, PubMedCentral full-texts,
and an additional set of assorted microbiology resources. The initial set of pheno-
type assignments was collected from NCBI, BacMap [11] and GOLD databases
[7]. The set of biochemical phenotypes was collected manually from individual
publications where various microbial species were initially characterized.

2.2 Inferring Phenotypic Concepts

We applied non-negative matrix factorization (NMF), commonly used for topic
discovery tasks, to each text resource separately to discover novel phenotypic
concepts. We then clustered the NMF factors, while requiring that a concept has
to be consistently discoverable in at least three text resources. Since the NMF
algorithm has a stochastic component, we ran the algorithm multiple times with
di�erent random seeds while also varying the number of factors parameter, in
order to maximize the diversity of discovered concepts. These groups were then
examined by an expert and those describing new phenotypes were retained and
used in the same way as labels collected from the existing databases. In total,
we discovered 113 non-redundant novel phenotypic concepts.



2.3 Phenotype Prediction

In the phenotype prediction task, the learning examples were species and the
class label was the presence/absence of a phenotype in that species. A separate
model was trained for each of the 424 phenotypes and 10-fold cross-validation
used to estimate the accuracy. Once a model was learned, it was applied to the
species with unknown phenotypic annotations. To make the functioning of our
models more interpretable to biologists, we also provide sets of most important
features of all models.

Predictions from textual data. We used bag-of-words representation with
tf-idf weighting of word frequencies across documents assigned to species in a
given text corpus. A Support vector machine (SVM) classi�er with a linear ker-
nel was trained on all combinations of text resources and phenotypes.

Predictions from genome data.We constructed �ve di�erent genomic repre-
sentations for each microbial species: (i) the proteome composition [1, 9] ; (ii) the
gene repertoire encoded as presence/absence of Clusters of Orthologous Groups
(COG) gene families [4, 6]; (iii) co-occurrence of species across environmental
sequencing data sets [3]; (iv) gene neighborhoods [8] encoded as pairwise chro-
mosomal distances between gene familiy members; and (v) genomic signatures
of translation e�ciency in gene families [5, 10]. Again, we trained models on all
combinations of representations and phenotypes. We used the Random Forest
(RF) classi�er which we found to outperform other tested algorithms.

Combining predictions. To combine predictions from di�erent models and
provide an interpretable estimate of con�dence in each prediction, the con�dence
scores of each prediction were converted to precisions, based on cross-validation
precision-recall curves. Precision scores for organisms in the initially unlabeled
set of organisms were calculated via linear interpolation between the neighboring
con�dence points and then assigned to both positive and negative class for each
prediction and further adjusted to account for di�erence in class sizes, ensuring
that the minimum precision of each class is 0, regardless of the number of posi-
tive/negative examples. The systematic validation performed by two experts on
a random sample of 2, 500 predictions showed that the precisions combined using
late fusion schemes agree well with human judgment, particularly when requir-
ing agreement of two independent models (either text or genomics-derived).

Web interface and results. In summary, ProTraits covers 3, 046 microbial
organisms and 424 microbial phenotypes. It provides predictions across six tex-
tual resources and �ve independent genomic representations. At the precision
threshold higher than 0.9, ProTraits assigns ≈ 545, 000 novel annotations, out of
which ≈ 308, 000 are supported in two or more independent predictions. A web
interface at http://protraits.irb.hr/ provides precision scores across 11 individ-
ual predictors and an integrated score calculated using the two-votes late fusion
scheme.



3 Challenges and Conclusions

Training separate classi�ers for each of the phenotypes does not scale well in
terms of computation time required, especially for high-dimensional genomic
datasets. However, using existing multi-label classi�ers was not straightforward
for our datasets since most of the target values were missing. Another challenge
was collecting initial labels, as this requires tedious manual curation. While the
two existing microbial phenotype databases alleviated this problem in our work,
for other important problems in the life sciences, similar databases may not be
available. Crucially, the input of �eld experts has allowed us to validate predic-
tions and inferred concepts, demonstrating that our models are trustworthy.
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