TF Boosted Trees: A scalable TensorFlow based
framework for gradient boosting

Natalia Ponomareva, Soroush Radpour, Gilbert Hendry, Salem Haykal,
Thomas Colthurst, Petr Mitrichev, Alexander Grushetsky

Google, Inc.
tfbt-public@google.com

Abstract. TF Boosted Trees (TFBT) is a new open-sourced frame-
work for the distributed training of gradient boosted trees. It is based
on TensorFlow, and its distinguishing features include a novel architec-
ture, automatic loss differentiation, layer-by-layer boosting that results in
smaller ensembles and faster prediction, principled multi-class handling,
and a number of regularization techniques to prevent overfitting.

Keywords: Distributed gradient boosting, TensorFlow

1 Introduction

Gradient boosted trees are popular machine learning models. Since their intro-
duction in [3] they have gone on to dominate many competitions on real-world
data, including Kaggle and KDDCup [2]. In addition to their excellent accuracy,
they are also easy to use, as they deal well with unnormalized, collinear, missing,
or outlier-infected data. They can support custom loss functions and are often
easier to interpret than neural nets or large linear models. Because of their pop-
ularity, there are now many gradient boosted tree implementations, including
scikit-learn [7], R gbm [8], Spark MLLib [5], Light GBM [6], XGBoost [2].

In this paper, we introduce another optimized and scalable gradient boosted tree
library, TF Boosted Trees (TFBT), which is built on top of the TensorFlow
framework [1]. TFBT incorporates a number of novel algorithmic improvements
to the gradient boosting algorithm, including new per-layer boosting procedure
which offers improved performance on some problems. TFBT is open source, and
available in the main TensorFlow distribution under contrib/boosted_trees.

2 TFBT features

In Table 1 we provide a brief comparison between TFBT and some existing
libraries. Additionally, TFBT provides the following.

Layer-by-layer boosting. TFBT supports two modes of tree building: stan-
dard (building sequence of boosted trees in a stochastic gradient fashion) and
novel Layer-by-Layer boosting, which allows for stronger trees (leading to faster
convergence) and deeper models. One weakness of tree-based methods is the

2 TFBT: gradient boosting in TensorFlow

fact that only the examples falling under a given partition are used to produce
the estimator associated with that leaf, so deeper nodes use statistics calculated
from fewer examples. We overcome that limitation by recalculating the gradients
and Hessians whenever a new layer is built resulting in stronger trees that bet-
ter approximate the functional space gradient. This enables deeper nodes to use
higher level splits as priors meaning each new layer will have more information
and will be able to better adjust for errors from the previous layers. Empirically
we found that layer-by-layer boosting generally leads to faster convergence and,
with proper regularization, to less overfitting for deeper trees.

Multiclass support. TFBT supports one-vs-rest, as well as 2 variations that
reduce the number of required trees by storing per-class scores at each leaf. All

other implementations use one-vs-rest (MLLib has no multiclass support).

Table 1: Comparison of gradient boosted libraries.

Lib D? Losses Regularization
scikit- N R: least squares, least absolute dev, hu- Depth limit, shrinkage, bagging, feature
learn ber and quantile. C: logistic, Max-Ent subsampling
and exp
GBM N R: least squares, least absolute dev, t- Shrinkage, bagging, depth limit, min # of
distribution, quantile, huber. C: logistic, examples per node.
Max-Ent, exp, poisson & right censored
observations. Supports ranking
MLLib Y R: least squared and least absolute dev. Shrinkage, early stopping, depth limit,
C': logistic. min # of examples per node, min gain,
bagging.
Light Y R: least squares, least absolute dev, hu- Dropout, shrinkage, # leafs limit, feature
GBM ber, fair, poisson. C: logistic, Max-Ent. subsampling, bagging, L1 & L2

Supports ranking.

XGBoost Y R:

least squares, poisson, gamma,
tweedie regression. C': logistic, Max-Ent.
Supports ranking and custom.

L1 & L2, shrinkage, feature subsampling,
dropout, bagging, min child weight and
gain, limit on depth and # of nodes, prun-
ing.

TFBT Y

Any twice differentiable loss from
tf.contrib.losses and custom losses.

L1 & L2, tree complexity, shrinkage, line
search for learning rate, dropout, feature
subsampling and bagging, limit on depth
and min node weight, pre- post- pruning.

D? is whether a library supports distributed mode. R stands for regression, C for classification.

Since TFBT is implemented in TensorFlow, TensorFlow specific features are
also available

— Ease of writing custom loss functions, as TensorFlow provides automatic
differentiation [1] (other packages like XGBoost require the user to provide
the first and second order derivatives).

— Ability to easily switch and compare TFBT with other TensorFlow models.

Ease of debugging with TensorBoard.

— Models can be run on multiple CPUs/GPUs and on multiple platforms,
including mobile, and can be easily deployed via TF serving.

Checkpointing for fault tolerance, incremental training & warm restart.

TFBT: gradient boosting in TensorFlow 3

3 TFBT system design

Finding splits. One of the most computationally intensive parts in boosting
is finding the best splits. Both R and scikit-learn work with an exact greedy
algorithm for enumerating all possible splits for all features, which does not scale.
Other implementations, like XGBoost, work with approximate algorithms to
build quantiles of feature values and aggregating gradients and Hessians for each
bucket of quantiles. For aggregation, two approaches can be used [4]: either each
of the workers works on all the features, and then the statistics are aggregated in
Map-Reduce (MLLib) or All-Reduce (XGBoost) fashion, or a parameter server
(PS) approach (TencentBoost [4], PSMART [9]) is applied (each worker and PS
aggregates statistics only for a subset of features). The All-Reduce versions do
not scale to a high-dimensional data and Map-Reduce versions are slow to scale.
TFBT Architecture. Our computation model is based on the following needs:
1. Ability to train on datasets that don’t fit in workers’ memory.
2. Ability to train deeper trees with a larger number of features.
3. Support for different modes of building the trees: standard one-tree-per-
batch mode, as well as boosting the tree layer-by-layer.
4. Minimizing parallelization costs. Low cost restarts on stateless workers would
allow us to use much cheaper preemptible VMs.

Fig.1: TFBT architecture.

—— Read ensemble to
Worker 0 Worker 1 Worker 2 compute gradients
——+ Push new layer
Push quantile updates
Read quantile buckets

i
Feature stats Push gradients for
+Gradients buckets

Examples Examples Examples
[1]
Feature stats Feature stats
+Gradients +Gradients

— Read accumulated
statistics

Feature stats are quantile
boundaries and gradients
in each bucket

P0e, Ps
O @k sy O, || Feature k
in Oy stats

PSO

ensemble slats stats

Our design is similar to XGBoost [2], TencentBoost [4] in that we build dis-
tributed quantile sketches of feature values and use them to build histograms,
to be used later to find the best split. In TencentBoost [4] and PSMART [9]
full training data is partitioned and loaded in workers’ memory, which can be
a problem for larger datasets. To address this we instead work on mini-batches,
updating quantiles in an online fashion without loading all the data into the
memory. As far as we know, this approach is not implemented anywhere else.

Each worker loads a mini-batch of data, builds a local quantile sketch, pushes it
to PS and fetches the bucket boundaries that were built at the previous iteration.
Workers then compute per bucket gradients and Hessians and push them back to
the PS. One of the workers, designated as Chief, checks during each iteration if

4 TFBT: gradient boosting in TensorFlow

Algorithm 1 Chief and Workers’ work

1: procedure CALCULATESTATISTICS(PS, MODEL, STAMP, BATCH_DATA, LOSS_FN)
predictions < model.predict(BATCH_DATA)
quantile_stats < calculate_quantile_stats(BATCH_DATA)
push_stats(PS,quantile_stats, stamp) > PS updates quantiles
current_boundaries < fetch_latest_boundaries(PS, stamp)
gradients, hessians < calculate_derivatives(predictions, LOSS_FN)
gradients, hessians < aggregate(current_boundaries,gradients, hessians)
push_stats(PS,gradients, hessians, size(BATCH_DATA), stamp)
procedure DOWORK(PS, LOSS_FN, IS_CHIEF) > Runs on workers and 1 chief
while true do
BATCH_DATA < read_data_batch()
model < fetch_latest_model(PS)
stamp < model.stamp_token
CalculateStatistics(PS,model, stamp, BATCH_DATA,LOSS_FN)
if is_chief & get-num_examples(PS, stamp) > N_.PER_LAY ER then
next_-stamp <— stamp + 1
stats < flush(PS, stamp, next_stamp) > Update stamp, returns stats
build_layer(PS, model, next_stamp, stats) > PS updates ensemble

= e e
0D UAWNHO© 0T Uk W

the PS have accumulated enough statistics for the current layer and if so, starts
building the new layer by finding best splits for each of the nodes in the layer.
Code that finds the best splits for each feature is executed on the PS that have
accumulated the gradient statistics for the feature. The Chief receives the best
split for every leaf from the PS and grows a new layer on the tree.

Once the Chief adds a new layer, both gradients and quantiles become stale.
To avoid stale updates, we introduce an abstraction called StampedResource -
a TensorFlow resource with an int64 stamp. Tree ensemble, as well as gradients
and quantile accumulators are all stamped resources with such token. When the
worker fetches the model, it gets the stamp token which is then used for all
the reads and writes to stamped resources until the end of the iteration. This
guarantees that all the updates are consistent and ensures that Chief doesn’t
need to wait for Workers for synchronization, which is important when using
preemptible VMs. Chief checkpoints resources to disk and workers don’t hold
any state, so if they are restarted, they can load a new mini-batch and continue.

References

1. Abadi, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems. In: OSDI 16

2. Chen, T., et al.: XGBoost: A scalable tree boosting system. CoRR (2016)

3. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. An-
nals of Statistics 29, 1189-1232 (2000)

4. Jiang, J., et al.: Tencentboost: A gradient boosting tree system with parameter

server

Meng, X., Bradley, J., et al.: MLlib: Machine learning in Apache Spark (2016)

Microsoft: Microsoft/dmtk. https://github.com/microsoft/dmtk (2013)

Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. JMLR 12 (2011)

Ridgeway, G.: Generalized boosted models: A guide to the gbm package (2005)

Zhou, J., et al.: PSMART: Parameter server based multiple additive regression trees

system. WWW ’17 Companion

© 0N e o

