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Abstract. We present an explainable recommendation system for novels and au-
thors, called Lit@EVE, which is based on Wikipedia concept vectors. In this sys-
tem, each novel or author is treated as a concept whose definition is extracted
as a concept vector through the application of an explainable word embedding
technique called EVE. Each dimension of the concept vector is labelled as either
a Wikipedia article or a Wikipedia category name, making the vector represen-
tation readily interpretable. In order to recommend items, the Lit@EVE system
uses these vectors to compute similarity scores between a target novel or author
and all other candidate items. Finally, the system generates an ordered list of sug-
gested items by showing the most informative features as human-readable labels,
thereby making the recommendation explainable.

1 Introduction

Recently, considerable attention has been paid to providing meaningful explanations
for decisions made by algorithms [?]. On the legislative side, the European Union has
approved regulations that requires a “right to explanation” in relation to any user-facing
algorithm [?]. This increased emphasis on the need for explainable decision-making al-
gorithms is the first motivation for our work. As further motivation, increasingly recom-
mender systems attempt to offer serendipitous suggestions, where the items being rec-
ommended are relevant but also potentially different from those items which they users
seen previously [?]. To address both of these motivations, we propose the Lit@EVE sys-
tem, which makes use of Wikipedia articles and categories as a rich source of structured
features. Furthermore, to explain the similarity between items, the system makes use of
our previously-proposed word embedding algorithm called EVE [?]. Word embedding
algorithms generate real-valued representation for words or concepts in a vector space,
allowing simple comparisons to be made between them by operating over their corre-
sponding vectors. In the case of EVE, the dimensions of this space are human-readable,
as each dimension represents a single Wikipedia article or category. We demonstrate
this approach in the context of recommending books and authors, where EVE concept
vectors are used to represent both authors and their literary works.

Recently, Chang et al. [?] described a crowdsourcing-based framework for gener-
ating natural language explanations which relies on specific human-generated annota-
tions, whereas our system harnesses the ongoing work of Wikipedia editors, and au-
tomatically assigns labels to explain a given recommendation. Moreover, the use of a
rich set of Wikipedia articles and categories as features helps to highlight serendipitous
aspects of recommended items which are otherwise difficult to discover.



2 System Overview

We now present an overview of the Lit@EVE system. First, we discuss the dataset used
to build our recommender, then we discuss the corresponding EVE word embeddings,
and finally we show how recommendations are generated using the system.

2.1 Dataset

Our dataset is based on the curated “Wikiproject novels”1 list which contains 49,999
Wikipedia entries (as of 20 April 2017) relating to literature. Many of these entries
correspond to novels, although some denote other literary concepts, such as genres,
publishers, and tropes. In order to exclusively extract novels, we include only those with
a Wikipedia info box that contains an “author” attribute. This filtered set has 18,572
entries corresponding to novels. From the author attribute of each entry, we discovered
2,512 unique authors. Our combined dataset contains both the novel and author entries.

2.2 Concept Embeddings

The EVE algorithm generates a vector embedding of each word or concept by mapping
it to a Wikipedia article2 [?]. For example, the concept “Harry Potter” is mapped to
the Wikipedia article of the novel “Harry Potter”. After identifying the concept article,
EVE generates a vector with dimensions quantifying the association of the mapped ar-
ticle with other Wikipedia articles and categories. In the case of articles, EVE exploits
the hyperlink structure of Wikipedia. Specifically, associations are calculated as a nor-
malised sum of the number of incoming and outgoing links between the concept article
and other Wikipedia articles. Furthermore, a self-citation is also added for the concept
article. To quantify associations with Wikipedia categories, EVE propagates scores from
the concept article to other related Wikipedia categories – e.g., “Harry Potter” has re-
lated categories “Fantasy novel series”, “Witchcraft in written fiction”, etc. Each of the
related categories receives a uniform score which is propagated to neighbouring cate-
gories (i.e., super and sub categories) by means of a factor called jump probability. The
propagation continues until a maximum hop count is reached, which prevents topical
drift. The final embedding vector for the concept is constructed from the associations
for all articles and categories. For further details on the construction of embedding vec-
tors refer to our paper on EVE [?]. We apply this process for all novels and authors in
our dataset. The resulting vectors form the input for Lit@EVE to generate explainable
recommendations.

2.3 Lit@EVE Recommendations

Lit@EVE generates recommendations via a two step process. Firstly, it embeds domain-
specific knowledge in the EVE vectors, and then it applies a similarity function to these
vectors to rank candidate recommendations.

1 https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Novels
2 Either an exact match or a best match.



Fig. 1. The Lit@EVE interface supports three selection levels – novels, authors, and features.

Domain-specific vector rescaling: To generate recommendations, we eliminate rare
dimensions from the EVE vector embeddings for novels and authors and incorporate
domain-specific knowledge in the vector embeddings. This is done as follows. First,
we calculate the item frequency of each dimension (i.e., the number of novels or au-
thors with a non-zero association for this value). Dimensions with a frequency < 3 are
eliminated from the model. This limits the dimensionality to 156,553 unique features
for novels and authors. Next, we scale the dimensions by the inverse item frequency
of each dimension. Furthermore, each association of the Wikipedia hyperlink in the
vector representation is scaled by the importance of the Wikipedia hyperlink which is
calculated by PageRank score [?]. Finally, the vectors are normalised to unit length.
Generating recommendations: The rescaled vectors representing novels and authors
are used to generate recommendations. For a target novel or author, we calculate cosine
similarities between that item and the rest of the items in the dataset. The candidate list
is then sorted by similarity to identify the top recommended items. Each recommended
item is explained by the most informative features i.e., the embedding dimensions which
maximise the similarity score between the target and recommend item; we select top-n
informative features where n equals 10 for this demonstration. The explanation cor-
responding to the informative feature is the label of that dimension (e.g. “American
Horror Novelist”).

3 User Interface

Figure 1 shows the query-based exploratory interface of Lit@EVE. Users may query
or select an item (a novel or author) which allows for further exploration through ex-



plainable recommendations. Each novel suggested to a user is explained through fea-
tures such as “Novels Set In Kansas”, while each suggested author is also explained
with features such as “British Writers”. Alternatively, users may opt to browse items
strongly associated with features, such as “Fantasy Novels” or “Victorian Novelists”.
The following use-cases illustrate the various aspects of recommendations generated by
Lit@EVE:

– Selecting the novel “Harry Potter and the Order of the Phoenix” suggests “The Lord
of the Rings” as the recommended novel, with common features such as both being
“BILBY Award-winning works”, both being “Sequel Novels”, and both involving
a plot having “Fictional Prisons”.

– Selecting the author “Terry Pratchett” offers a list of similar author recommenda-
tions e.g. “John Fowles”. Both are explained with common features such as “En-
glish Humanists”, “English Atheists ”, “20th-century English Novelists”.

– Selecting the feature “Nautical Fiction” offers a list of novel recommendations from
genres such as “Adventure novel”, “Historical Fiction”, and “Children’s fantasy
novel”. This may be interesting to a user who is interested in “Nautical Fiction”
who would like to browse novels from different genres which incorporate aspects
of nautical fiction.

An interesting aspect of the explanations associated with our recommendations is the
granularity at which they help users to discover serendipitous aspects around a given
novel or author. For instance, in the first use case above, the feature “BILBY Award-
winning works” connects diverse works that have won this children’s book award, po-
tentially allowing users to make serendipitous discoveries of novels of this type. For
further details on the unique aspects of recommendations generated by Lit@EVE, we
refer the reader to an online video demonstration of the system3.
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