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Abstract. Visualizing frequently occurring patterns and potentially un-
usual behaviors in trajectory can provide valuable insights into activities
behind the data. In this paper, we introduce TrajViz, a motif (frequently
repeated subsequences) based visualization software that detects pat-
terns and anomalies by inducing “grammars” from discretized spatial
trajectories. We consider patterns as a set of sub-trajectories with un-
known lengths that are spatially similar to each other. We demonstrate
that TrajViz has the capacity to help users visualize anomalies and pat-
terns effectively.

1 Introduction

With the rapid growth of tracking technology, a large amount of trajectory data
are generated from users’ daily activities. Discovering frequently occurring pat-
terns (motifs) and potentially unusual behaviors can be used to summarize the
overwhelming amount of trajectories data and obtain meaningful knowledge. In
this paper, we present TrajViz, a software that visualizes patterns and anomalies
in trajectory datasets. TrajViz extends our previous work in time series motif
discovery [?] to sub-trajectory pattern visualization. We consider patterns as a
set of sub-trajectories with unknown lengths that are spatially similar to each
other. We use a grid-based discretization approach to remove the speed informa-
tion and adapt a grammar-based motif discovery algorithm, Iterative Sequitur
(ItrSequitur), to discover the patterns. We design a user-friendly interface to
allow visualization of repeated, as well as unusual sub-trajectories within the
datasets.

2 Relate Work and Overview of TrajViz

Previously, we introduced a grammar-based motif discovery framework [?], which
uses Sequitur[?], a grammar induction algorithm, to find approximate motifs of
variable lengths in time series. However, the unique characteristics and chal-
lenges associated with spatial trajectory data make it unsuitable and difficult
to apply the algorithms directly on trajectory data. In [?], the authors intro-
duced STAVIS, a trajectory analytical system that uses grammar induction to
infer variable-length patterns. However, its definition of “pattern” is based on



Fig. 1: Screenshot of TrajViz and Default View for San Franciso Taxi data [?]

time series motifs. Therefore, speed variation will significantly affect the quality
of patterns discovered. Other work such as [?][?] focuses on either sequential
pattern mining based on important locations, or trajectory clustering, both of
which are different from the goal of our software.

A screenshot of TrajViz is shown in Fig. 1. TrajViz follows the Visual Information-
Seeking Mantra [?]. After processing the data, an overview heat map of pattern
density is displayed. User can zoom in to see the detailed map and use do-
main knowledge to filter out unwanted patterns by setting minimum frequency,
minimum continuous blocks length (Minimal Motif Length) and maximum fre-
quency for anomaly detection (Anomaly Frequency). Adjusting these thresholds
does not require re-running the discretization and grammar induction steps (in-
troduced in the next subsection). Further details on TrajViz can be found in
goo.gl/cKCeDt.

3 Our Approach

3.1 Discretization

Before we can induce grammars on trajectory data, it is necessary to pre-process
the data. We first convert the trajectory data to speed-insensitive symbolic se-
quences after removing noises from the trajectory dataset. To prepare for dis-
cretization, we divide the entire region into an (α × α) equal-frequency grid,
where α is the grid size. We assign each grid cell a block ID sequentially from
left to right and from top to bottom.

After block IDs are assigned, we use a four-step procedure to convert raw
trajectory to a block ID sequence Sblock. First, we up-sample the raw trajectory
by using linear interpolation to ensure that the consecutive blocks in Sblock are
spatially adjacent. Then trajectories are converted into block ID sequences based
on the order of traversal. Next, we perform further noise removal by removing
blocks that are barely covered by the trajectory. Finally, numerosity reduction
[?] is adopted to compress the sequence by only recording the first occurrence of



Fig. 2: Example of patterns detected in San Franciso Taxi Dataset [?] (a) Motif
Heatmap (b) A pattern indicates a frequently visited route from the city to
airport (c) An unusual (infrequent) round trip route

consecutively repeating symbol. Sblock is insensitive to speed variation. This is
an important property that allows us to detect spatially-similar sub-trajectories.

3.2 Grammar Induction with ItrSequitur

As demonstrated in previous work [?], a context-free grammar summarizes the
structure of an input sequence. Intuitively, repeated substrings in Sblock represent
a set of similar sub-trajectories. Therefore, learning a set of grammar rules to
identify repeating substrings from Sblock can discover frequently occurring pat-
terns (sub-trajectories) in trajectory data. Previous work [?] utilizes Sequitur [?],
a linear complexity grammar induction approach, to learn the grammar rules.
However, Sequitur can only detect patterns if they have identical symbolic rep-
resentation. In TrajViz, we adapt an iterative version of Sequitur, called ItrSe-
quitur [?], for more robust grammar induction. ItrSequitur iteratively rewrites
the input sequence based on the output of Sequitur and re-induces the grammar
on the revised sequence until no new grammar can be found. Different from Se-
quitur, ItrSequitur allows small variation in matching substrings. Therefore, it
is robust to noise in the dataset.

3.3 Patterns/Anomalies Discovery and Motif Heatmap

TrajViz consolidates the patterns detected by merging patterns that have similar
symbolic representations. Top-ranked frequent patterns that satisfy user-defined
filtering conditions are listed in the motifs/anomalies table. User can navigate
the patterns by clicking through the items in the table; a zoom-in of the selected
pattern is then shown on the right panel. Fig. 2 shows screenshots of a motif and
an anomaly detected. To show the direction of the trajectories, the start points
are marked by black circles, and the end points are denoted by black squares.

For each point in a motif, we compute the point density by counting the
number of points from other motifs within some distance threshold, and create
a motif heatmap. A five-color gradient (blue-cyan-green-yellow-red) is built to
linearly map the densities to their specific colors. The most dense points have
the red colors while the least dense ones are in blue.



To find anomalies, we create a trajectory rule-density curve by counting the
number of grammar rules covering each consecutive pair of block IDs (we consider
a pair at a time in order to preserve the direction of the trajectory). The intuition
is that, an anomalous subsequence would have zero or very few repetitions, hence
low rule-density. TrajViz finds low-density subsequences within a trajectory and
marks them as unusual routes (Fig. 2(c)).

4 Target Audience

TrajViz provides an efficient, interpretable, and user-interactive mechanism to
understand functional activities behind massive trajectory data. TrajViz targets
a diverse audience including researchers, practitioners, and scientists who are
interested in discovering patterns in trajectory data.
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