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Abstract. High-dimensional data are prevalent in various machine learning ap-
plications. Feature selection is a useful technique for alleviating the curse of di-
mensionality. Unsupervised feature selection problem tends to be more challeng-
ing than its supervised counterpart due to the lack of class labels. State-of-the-art
approaches usually use the concept of pseudo labels to select discriminative fea-
tures by their regression coefficients and the pseudo-labels derived from cluster-
ing is usually inaccurate. In this paper, we propose a new perspective for unsuper-
vised feature selection by Discriminatively Exploiting Similarity (DES). Through
forming similar and dissimilar data pairs, implicit discriminative information can
be exploited. The similar/dissimilar relationship of data pairs can be used as
guidance for feature selection. Based on this idea, we propose hypothesis testing
based and classification based methods as instantiations of the DES framework.
We evaluate the proposed approaches extensively using six real-world datasets.
Experimental results demonstrate that our approaches achieve significantly out-
performs the state-of-the-art unsupervised methods. More surprisingly, our unsu-
pervised method even achieves performance comparable to a supervised feature
selection method.
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1 Introduction

Feature selection [5] [7] [10] [20] [22], as a dimension reduction technique, can help
improve the performance of machine learning tasks [14], by selecting a subset of fea-
tures. Besides, it can also enhance the efficiency of subsequent learning process, and
provide easier interpretation of the problem.

Depending on the availability of supervision information, feature selection meth-
ods can be categorized into two classes: Supervised feature selection and unsuper-
vised feature selection. For supervised feature selection, the criterion on good features
is more straightforward: good features should be highly correlated with class labels,
such as Fisher Score [3] and HSIC [13]. Without guidance from class labels, it is diffi-
cult to evaluate the discriminativeness of features. Different heuristics (e.g., frequency
? The work was performed when the first author was a Ph.D. student at University of Illinois at
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based, variance based) have been proposed to perform unsupervised feature selection.
Similarity-preserving approaches [5] [24] have gained much popularity among others.
In such similarity preserving framework, a feature is considered to be of good quality if
it can preserve the local manifold structure well.

However, such simple heuristics do not necessarily lead to discriminative features.
Recently, pseudo label based algorithms [8] [22] have been developed. Since class la-
bels are not available, such methods attempt to generate pseudo labels via certain clus-
tering methods. They select features based on their utility to predicting pseudo labels.
One major drawback of such approach is that the pseudo labels are usually far from
accurate (accuracy is usually about 30% - 70% as reported in previous work [8] [11]).
So such inaccurate pseudo labels can mislead feature selection. Also, in unsupervised
explorative analysis, the number of classes is often not known as apriori.

The central issue in unsupervised feature selection is how to effectively uncover the
discriminative information embedded in the data. Is the concept of pseudo-label the only
and best way to achieving discriminativeness? In this paper, we present a novel perspec-
tive, pseudo must-link, and show how it can be a better alternative than pseudo-labels.
We refer to the proposed framework as DES (Discriminatively Exploiting Similarity),
which performs unsupervised feature selection based on similarity in a discriminative
manner. Specifically, DES aims to exploit the key intuition that similar data points are
more likely to be of the same class than two random data points. We present a pair-wise
formulation to effectively utilize the such difference between similar and dissimilar data
points.

By regarding similar pair/dissimilar pair as two classes, the rich arsenal of super-
vised feature selection approaches can be employed. We propose two instantiations
of this framework for unsupervised feature selection: Hypothesis Testing based HT-
DES and Classification based CL-DES. The proposed approaches are conceptually
simple, easy to implement but highly effective. Experimental results shows that DES
can achieve significantly better performance than state-of-the-art unsupervised meth-
ods. Besides, the performance of CL-DES is even comparable to that of supervised mu-
tual information-based method on most datasets. To our best knowledge, this is the first
time an unsupervised method reportedly achieves comparable performance as a clas-
sic supervised feature selection method, which illustrates the strength of the proposed
framework.

2 Related Work

In this section, we review related work on feature selection.
Feature selection has attracted considerable amount of attention in the research com-

munity. The goal is to alleviate the curse of dimensionality, enabling machine learning
model to achieve comparable, if not better, performance. In supervised feature selec-
tion, the criterion for good features is more straightforward: good features should be
highly correlated with class labels. Many methods have been proposed to capture the
correlation between label and feature, such as Mutual Information, Fisher Score [3] and
Hilbert-Schmidt Independence Criterion (HSIC) [13] and LASSO [16].



In the unsupervised setting, heuristic-based feature selection algorithms tend to
evaluate the importance of features individually [5] [23], which has a limitation of
neglecting correlation among features. Recent methods [11] [12] [22] overcome this
issue by evaluating feature utility with L2,1 norm-based sparse regression, which are
typically in the following form:

min
W,U

l(XW −U) +

R∑
i=1

αi · regi(U) + λ||W||2,1

s.t. Constraint(U)

where X is the feature matrix and U is cluster indicators/latent factors. The L2,1 norm
||W||2,1 promotes row sparsity in the coefficient matrix W and hence achieves the
effect the feature selection. Different sparse regression-based methods usually differ
in l(·), reg(·) and Constraint(U) they use. A typical choice for l(·) is Frobenius
norm, such as in UDFS [22], NDFS [8] and FSASL [2], while RUFS [11] and RSFS
[12] employ robust L2,1 loss and Huber Loss as l(·), respectively. Concerning reg(U),
different choices can also be made. For example, UDFS, NDFS and RSFS use lo-
cal structure-based regularizations in the objective function. RUFS further adds NMF
(Non-negative Matrix Factorization) based regularization and FSASL adds sparse re-
gression [21] based regularization. Most methods also put certain constraints on U,
such as non-negative constraint and orthogonal constraint [8] [11] [12].

However, all these pseudo-label approaches have similar drawbacks: the cluster la-
bels are usually not accurate enough [8][12]. The wrongful information contained in the
pseudo labels can further mislead feature selection. Besides, they have 3 ∼ 4 param-
eters (e.g., number of pseudo labels and several regularization terms) to be specified
in the objective function. In unsupervised setting, it is difficult to know the optimal
parameters, which limits their practical utility.

Recently, feature selection for non-traditional data types has drawn increasing at-
tention, such as feature selection for linked data [6] [15] [17] [19] and multi-view data
[4] [18].

3 Formulations

3.1 Notations

Suppose we have n data points X = [x1,x2, . . . ,xn] and the number of features is
D. Let fp denote the p-th feature (p = 1, 2, . . . , D) and xip denotes the value of p-th
feature of xi. Our goal is to select d (d < D) discriminative features.

As other similarity based feature selection methods [5], we first construct a kNN
similarity graph G from X (e.g., by cosine similarity). In this graph G, each data instance
is connected with its k nearest neighbors. For each data instance xi (i = 1, . . . , n), we
denote its neighbors as N (xi) and the set of non-neighbors as NN (xi).

3.2 Discriminatively Exploiting Similarity

In general, we want to select features highly indicative of certain classes/topics. In su-
pervised setting, labels provide clear guidance for feature selection: those features that



Fig. 1: Supervised Scenario with real labels (left) v.s. Unsupervised Scenario with Sim-
Labels (right). Circles are data points and diamonds are terms/features. Link between
data instance and terms indicates the occurrence of term. On the left, ’+’ and ’-’ denote
two classes. Double-edged line denotes similar pair and dashed line denotes dissimilar
pair

lead to good separability of different classes should be good features. If a term is usually
shared by data points from the same class and rarely shared by data points from differ-
ent classes, then this term is likely to be a discriminative one. In comparison, generic
terms are shared indiscriminatively by data points from different classes. Consider the
example shown in Figure 1. Feature 1 and 8 are discriminative ones but feature 5 is not
discriminative.

Our goal is to exploit this intuition in unsupervised case. Based on the kNN sim-
ilarity graph, we first define SimLabel to divide pairs of data points into to classes:
must-link (similar pairs) and cannot-link (dissimilar pairs).

Definition 1 SimLabel: Given the kNN graph G constructed from pairwise similarity,
we label each pair of data points (xi,xj) (i, j ∈ {1, 2, . . . , n}, i 6= j), with SimLabel
lsij defined as below:

lsij =

{
1 if xi ∈ N (xj) or xj ∈ N (xi)
−1 otherwise (1)

We refer to pairs with ls = 1 as must-links (similar pairs) and pairs with ls = −1 as
cannot-links (dissimilar pairs). Let us denote the set of similar pairs and set of dissimilar
pairs asΩs andΩd, respectively. We also useΩ = Ωs∪Ωd to denote the set of all pairs.
Note that some non-neighbors are not necessarily very different (e.g. data instance i and
its (k + 1) closest data instance), but most of them are not as close as neighbors.

To make better use of similarity for selecting discriminative features, we exploit
the following intuition: two neighbors are more likely to be of the same class than



two random non-neighbors. If a term is shared more often by neighbors than by non-
neighbors, it is likely to be discriminative for certain class. In this sense, whether two
data points are similar or not can serve the similar functionality of class labels to guide
feature selection. We refer to this approach as Discriminatively Exploiting Similarity
(DES). Consider feature 1, 5 and 8 in Figure 1 for example. Discriminative features such
as 1 and 8 are are shared more often by similar pairs, while generic feature 5 is shared by
almost equal amount of similar pairs and dissimilar pairs. For a real-world example, one
can consider a collection of research papers on different topics (e.g., Machine Learning,
Database and OS). Discriminative terms such as SVM and classification appear more
often in pairs of similar papers. In comparison, generic terms such as compare and
propose appear equally likely in similar papers and dissimilar papers.

In supervised feature selection, each data instance is an instance for learning. In the
framework of DES, a pair of data points, rather than a single data instance, becomes
the basic instance for learning. Since the instance in DES is a pair of data points, data
features cannot be directly used for feature selection. We derive SimFeatures from for
each pair.

Definition 2 SimFeature: Given a pair of data points (xi,xj), the p-th SimFeature is
defined as the product of corresponding feature values:

(xi,xj)p = xip · xjp (2)

For example, for data points with binary features (e.i., term occurrence), the p-th Sim-
Feature for pair (xi,xj) is whether two data points xi and xj both have term p.

Our approach uses neighbor/non-neighbor relationship to serve as a proxy of class-
belonging information. We aim to exploit the contrast between similar and dissimi-
lar pairs rather than preserving the similarity itself. The contrast can provide useful
information for selecting discriminative features. Compared with pseudo label based
approaches, we do not explicitly construct labels and therefore the number of classes
does not need to be specified explicitly. By discriminatively preserving similarity, DES
combines the strength of similarity based approach and pseudo-label based approach.

4 Instantiations of the DES

In previous section, we introduce the general idea of DES. In this section, we adapt
ideas from supervised feature selection and combine them with DES.

4.1 Hypothesis test based DES (HT-DES)

There are statistical test based supervised feature selection methods, such as Chi-square
test [9]. Chi-square tests the null hypothesis that the given feature is independent of the
class label. The features with higher test statistics are selected since this indicates the
null hypothesis should be rejected and hence such features are highly correlated with
the class label.

Inspired by Chi-square test, we propose a hypothesis testing based approach to ex-
ploit the difference of similar/dissimilar pairs. We test whether a feature has higher



proportion in similar pairs than in dissimilar pairs. If a feature appears more often in
similar pairs than in dissimilar pairs, it is likely to be an informative feature.

Specifically, we perform two proportion one-tailed z-test. For a feature, we use ps
to denote the proportion of its presence in similar pairs and pd the proportion of this
feature in dissimilar pairs. The null hypothesis and alternative hypothesis can be formed
as follows.

H0 : ps = pd

H1 : ps > pd
(3)

Pooled sample proportion. Since the null hypothesis assumes ps = pd, we use a
pooled proportion p̂ to calculate the standard error.

p̂ =
ps · ns + pd · nd

ns + nd
(4)

where ns and nd are the numbers of sampled similar and dissimilar pairs, respectively.
Standard error With the pooled proportion p, we can compute the standard error.

SE =

√
p̂(1− p̂)( 1

ns
+

1

nd
) (5)

Test statistics We use the following z-score as test statistic for the difference in propor-
tions.

z =
ps − pd
SE

(6)

Features with high z-scores are shared significantly more often by similar pairs than by
dissimilar pairs. Low z-score means that the feature is almost equally possible to appear
in both similar and dissimilar pairs and hence less discriminative. For the example in
Figure 1, feature 1 and 8 will have high z-score and feature 5 will have low z-scores. To
obtain high-quality features, we can select the top features with high z-scores.

4.2 Classification-based DES (CL-DES)

HT-DES evaluates features individually and the z-score of one feature is not influenced
by the z-scores of other features. So the selected subset of features can be highly redun-
dant. Such redundancy would lead to higher computational cost and potentially degen-
erated performance.

In this section, we present a classification based approach to evaluate features jointly.
The intuition is that discriminative features should be able to distinguish similar pairs
from dissimilar pairs. Class labels establish the difference between data instances. In
our DES framework, similarity can establish the difference between instance pairs and
acts similarly as the class labels do in supervised setting. If a feature is highly indicative
of similarity relationship, it is likely to be a useful feature.

To perform feature selection, we first introduce a weight vector w as features’ im-
portance scores since not all features are equally important. By using w, we define
Weighted Similarity between two instances:



Definition 3 Weighted Similarity: For two instances (xi,xj) (i, j ∈ {1, 2, . . . , n}, i 6=
j), their weighted similarity swij w.r.t weight vector w is defined as:

swij = xTi diag(w)xj (7)

where diag(w) is the diagonal matrix with w as diagonal elements.

It is desirable that the weighted similarity can distinguish similar pairs from dissimilar
pairs:

swij · lsij > 1, ∀(i, j) ∈ Ω (8)

This objective makes our formulation essentially different from the similarity preserv-
ing framework, since our goal is to separate similar pairs from dissimilar pairs rather
than preserving similarity itself.

In supervised feature selection, L1-regularization [16] is able to take into consid-
eration the redundancy among features and achieves great success due to its simplicity
and effectiveness. To get sparse weight vector w, we add L1 regularization to our DES
framework:

min
w
‖w‖1

s.t. swij · lsij ≥ 1,∀(i, j) ∈ Ω
(9)

However, similar/dissimilar pairs may not always be separable given the weight vector
w, since the original similar/dissimilar pairs constructed from features can be noisy. So,
to address this issue, we add an slack variable µij to impose soft margin.

min
w

1

|Ω|
∑

(i,j)∈Ω

µij + λ‖w‖1

s.t. swij · lsij ≥ 1− µij ,∀(i, j) ∈ Ω
(10)

Eq (10) can also be interpreted as L1 regularized SVM on pair-wise instances with
SimLabel and SimFeatures. Discriminative features are more likely to appear in similar
pairs and would have relatively larger positive weights. Indiscriminative features have
little utility in differentiating similar pairs and dissimilar pairs. As a result, the weights
of such features are close to zero or negative. If we rank the features w.r.t their weights,
we can select the top ones as high quality features.

5 Optimization

For HT-DES, the optimization is straightforward: one can simply calculate the z-scores
of each feature and select the top ones. There are O(nk) similar pairs and O(n(n −
k)) dissimilar pairs. So the number of dissimilar pairs is much larger than number of
similar pairs since k � n. To avoid imbalanced distribution of SimLabels, we employ
a bootstrapping based approach to sample equal amounts of similar and dissimilar pairs
for HT-DES and CL-DES.

For CL-DES, the objective function is not differentiable due to hinge loss and L1

regularization, we calculate subgradient for the objective function and optimize it by



stochastic subgradient descent. For a data instance pair (xi,xj), the subgradient w.r.t
wp (p = 1, . . . , D) is:

∂L(xi,xj)
∂wp

=
∂

∂wp
µij + λ · sign(wp) (11)

where the subdifferential ∂
∂wp

µij can be calculated as follows.

∂

∂wp
µij =

{
xip · xjp · lsij , if swij · lsij < 1

0, otherwise
(12)

Algorithm 1 Stochastic Subgradient Descent Algorithm for CL-DES

1: w0 ← [0, 0, . . . , 0]
2: for (t in 1..T ) do
3: Generate random number α ∈ (0, 1)
4: if α > 0.5 then
5: Sample a similar pair (xi,xj) (xj ∈ N (xi))
6: else
7: Sample a dissimilar pair (xi,xj) (xj ∈ NN (xi))
8: end if
9: Update wt using the sampled pair with formula (11)

10: end for
11: Sort features w.r.t. w[i] and output the top d features

The Stochastic Sub-gradient Descent method is shown in Algorithm 1 and the time
complexity is O(mT ), where m is the average number non-zero features in each data
instance and T is the total number of iterations.

6 Experiment

In this section, we conduct experiments on six publicly available datasets. We compare
DES with several state-of-the-art approaches.

6.1 Baselines

We compared our approach to four unsupervised feature selection methods and one
supervised method. LS is a similarity-preserving approach. UDFS and NDFS are re-
gression based methods which also consider the similarity information.

– All Features: It uses all the features for evaluation.
– Laplacian Score (LS): Laplacian score [5] selects the features which can best pre-

serve the local manifold structure of data points.
– UDFS: Unsupervised Discriminative Feature Selection [22] exploits the local struc-

ture with L2,1 norm regularized subspace learning.



– RSFS: Robust Spectral Feature Selection [12] selects features by the robust spectral
analysis with L2,1 norm regularized regression.

– FSASL: A recently proposed approach [2] which performs joint local structure
learning and feature selection based on L2,1 norm.

– Mutual Information (MI): We also include a widely-used supervised feature selec-
tion method which evaluates features by their mutual information with class labels.
Since there are multiple classes, for each feature we use its average mutual infor-
mation with different classes.

6.2 Datasets

We use six publicly available datasets: CNN dataset1, Handwritten digits Dataset2,
BBCSport dataset3, Guardian dataset4, BlogCatalog5 blog-posts dataset, Newsgroup
6. The baseline methods UDFS, RSFS and FSASL are prohibitively slow for large
datasets. The original data of the latter two datasets are too large and therefore we
sample a subset of them.

– CNN: CNN Web news with 7 classes (the category information contained in the
RSS feeds for each news article can be viewed as reliable ground truth). Titles,
abstracts, and text body contents are extracted as the text features.

– Handwritten Digits: 2000 images of handwritten digits 0 ∼ 9 and we use the image
pixels as features.

– BBCSport: It consists of 737 documents from the BBC Sport website correspond-
ing to sports news articles in five topical areas from 2004-2005. The dataset has 5
classes: athletics, cricket, football, rugby, tennis.

– Guardian: It consists of 302 news stories from Guardian during the period February
- April 2009. Each story is annotated with one of the six topical labels based on the
dominant topic: business, entertainment, health, politics, sport, tech.

– Newsgroup: A subset of Newsgroup dataset on four topics: comp.graphics, rec.sport.baseball,
rec.motorcycles, sci.electronics.

– BlogCatalog: A subset of users’ blogposts from BlogCatalog in the following cat-
egories (100 posts are sampled for each category): cycling, military, architecture,
commodities/futures, vacation rentals.

The statistics of six datasets are summarized in Table 1.

6.3 Experimental Setting

In this section, we evaluate the quality of selected features by their clustering perfor-
mance. Following the typical setting of evaluation for unsupervised feature selection

1 https://sites.google.com/site/qianmingjie/home/datasets/cnn-and-fox-news
2 https://archive.ics.uci.edu/ml/datasets/Multiple+Features
3 http://mlg.ucd.ie/datasets/bbc.html
4 http://mlg.ucd.ie/datasets/3sources.html
5 http://dmml.asu.edu/users/xufei/datasets.html
6 http://www.cs.umb.edu/∼smimarog/textmining/datasets/



[8] [20] [22], we use Accuracy and Normalized Mutual Information (NMI) to evaluate
the result of clustering. Accuracy is defined as follows.

Accuracy =
1

n

n∑
i=1

I(ci = map(pi)) (13)

where pi is the clustering result of data instance i and ci is its ground truth label.map(·)
is a permutation mapping function that maps pi to a class label using Kuhn-Munkres
Algorithm.

Normalized Mutual Information (NMI) is another popular metric for evaluating
clustering performance. Let C be the set of clusters from the ground truth and C ′ ob-
tained from a clustering algorithm. Their mutual information MI(C,C ′) is defined as
follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) log

p(ci, c
′
j)

p(ci)p(c′j)
(14)

where p(ci) and p(c′j) are the probabilities that a random data instance from the data
set belongs to ci and c′j , respectively, and p(ci, c′j) is the joint probability that the data
instance belongs to the cluster ci and c′j at the same time. In our experiments, we use
the normalized mutual information.

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′)
(15)

where H(C) and H(C ′) are the entropy of C and C ′. Higher value of NMI indicates
better quality of clustering.

We set k = 5 for the kNN neighbor size in both our approach and the baseline
methods following previous evaluation convention [8]. For λ in CL-DES, we set it to be
10−4 for all datasets, since in preliminary experiments we found the performance is not
sensitive to λ when it is in (10−6, 10−3). For HT-DES and CL-DES, we sample 40000
pairs for the optimization, as we observe sampling more pairs usually have similar
performance.

For the number of pseudo-classes/latent dimensions in UDFS, RSFS and FSASL,
we use the ground-truth number of classes. Note that it actually benefits these pseudo-
label based baselines with extra information about the data (and therefore certain ad-
vantages) since our approach does not need the number of classes as input. For the
parameter to enforce the orthogonal constraint in pseudo-label methods [12], we use
108 as in the original papers. However, UDFS, RSFS and FSASL also require speci-
fying the values of several other regularization parameters. In supervised learning, one
can perform grid search for the parameters on a validation dataset; but there is no good
way to determine the parameter values in unsupervised learning since we assume class
labels are not available. In their original papers, all the class labels are used to find the
best parameters. However, this violates the assumption of no supervision and favors the
methods with best overfitting ability. Nonetheless, we perform grid search in the range
of {0.1, 1, 10} for the regularization parameters in UDFS, RSFS and FSASL (except
for in FSASL, for which we do grid search in {0.001, 0.01, 0.1} since γ should be a



value in the range of 0 ∼ 1, as suggested in [2]). Besides the best performance, we also
report the median performance for them

Following the convention in previous work [1] [22], we use KMeans7 with cosine
similarity for clustering evaluation. Since KMeans is affected by the initial seeds, we
repeat the experiment for 20 times and report the average performance. We vary the
number of features d in the range of {100, 200, 300, 400, 600} (except for Handwritten
digit dataset, which only has 240 features).

6.4 Clustering Results

The clustering performance on six datasets is shown in Figure 2 and Figure 3. The
performance of baseline methods shown in Figure 2 and Figure 3 are under their best
parameter values. HT-DES and Mutual Information cannot handle continuous feature
values and hence are not applied to the handwritten dataset.

The experimental results show that feature selection is a very effective technique
for clustering. With much less features, DES can obtain better accuracy and NMI than
using all the features. For instance, compared with using all 4612 features, CL-DES
with only 100 features improves the clustering accuracy by 28% on BBCSport dataset.
Another thing worth noting is that, when the number of selected features is small (such
as 100 and 200), the improvement of DES over using all the features is also significant.
This means that DES is capable of ranking high-quality features at the top. Besides the
improved accuracy and NMI, using selected features rather than all features can also
lead to better interpretability for human to analyze.

Among the two DES instantiations, CL-DES tends to have better clustering per-
formance than HT-DES. This demonstrates the importance of evaluating features in a
joint manner. HT-DES does not take into consideration correlation between features and
there could be more redundancy in selected features.

When comparing DES with other unsupervised baseline methods, we observe that
DES methods (especially CL-DES) with fixed λ perform better than baseline methods
(with best parameter settings) in terms of both accuracy and NMI on most datasets. For
example, on BlogCatalog dataset, CL-DES outperforms the most competitive baseline
by 16% with 200 features.

Although HT-DES does not evaluate feature jointly, it still outperforms most un-
supervised baseline methods substantially. This illustrates the power of exploiting the
implicit class information contained in similar/dissimilar pairs. The baseline methods
also utilize similarity in certain ways. For example, LS attempts to preserve the local
manifold. RSFS generates pseudo-labels through spectral clustering on the similarity
graph. But the inaccurate clustering labels can be viewed as a lossy compression of
similarity information and may mislead feature selection. DES directly exploits the im-
plicit class information embedded in similarity pairs without generating intermediate
labels. The experimental results show that DES is a much more effective way for utiliz-
ing similarity information.

7 We use the code at http://www.cad.zju.edu.cn/home/dengcai/Data/
Clustering.html



If we compare DES with the supervised method MI, we can see the performance of
CL-DES is close to MI. It is usually very difficult for an unsupervised method to achieve
performance comparable to a supervised method. This further illustrates strength of
Discriminatively Exploiting Similarity (DES).

Table 1: Statistics of datasets
Statistics CNN Handwritten Digits BBC Sport BlogCatalog Guardian Newsgroup
# of instances 2107 2000 737 500 302 1575
# of features 6262 240 4612 4547 3631 2849
# of classes 7 10 5 5 6 4

Table 2: Relative performance (%) of median Accuracy/NMI (percentage) compared to
the performance reported in Figure 2 and 3

.

Statistics CNN Handwritten BBCSport BlogCatalog Guardian Newsgroup
UDFS -3.56/-6.74 -3.96/-2.06 -10.67/-23.91 -8.74/-18.33 -11.72/-25.33 -10.9/-31.64
RSFS -19.18/-34.07 -7.68/-4.80 -7.55/-11.07 -16.37/-37.49 -6.39/-9.50 -19.08/-38.97
FSASL -14.19/-17.72 -8.06/-12.15 -6.41/-4.30 -9.49/-16.95 -6.84/-12.40 -12.17/-24.49
CL-DES -0.53/-0.68 -0.55/-0.47 -0.32/-0.19 -0.06/-0.03 -0.75/-0.46 +0.09/-0.48

6.5 Sensitivity Analysis

CL-DES has one regularization parameter λ and we study how this parameter affects
the quality of selected features. In Figure 4, we can observe that CL-DES performs
consistently well as long as λ is smaller than 10−3.

We also show in Table 2 how the median performance for UDFS, RSFS and FSASL
compares with the best performance shown in Figure 2. It can be observed that these
baseline methods are sensitive to the parameter values and the median performance is
usually 5% ∼ 40% lower than their best performance. Since one cannot know the best
parameter combination for these methods in unsupervised setting, the median perfor-
mance is more realistic to expect in practice. In contrast, we also report the median
perform for CL-DES from λ = {10−6, 10−5, 10−4, 10−3, 10−2} and we observe that
the median performance is very close to performance of λ = 10−4. This makes the
proposed method more practical for real-world applications.

7 Conclusion

In this paper, we propose a new perspective for unsupervised feature selection which
considers the similarity relationship as pseudo must-link/cannot-links. This new per-
spective enables us to adapt classic supervised feature selection ideas into our pair-wise
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Fig. 2: Accuracy of clustering results
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Fig. 3: NMI of clustering results



formulation. We present hypothesis testing based and classification based approaches as
instantiations of our framework. Empirical results show that the proposed method, al-
though frustratingly simple, can select more discriminative features than state-of-the-art
unsupervised approaches and even achieve comparable performance as the supervised
mutual information approach.
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Fig. 4: NMI of clustering results with features selected by CL-DES under different val-
ues of λ

References

1. D. Cai, C. Zhang, and X. He. Unsupervised feature selection for multi-cluster data. In KDD,
pages 333–342, 2010.

2. L. Du and Y.-D. Shen. Unsupervised feature selection with adaptive structure learning. In
KDD, 2015.

3. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, 2 edition, 2001.
4. Y. Feng, J. Xiao, Y. Zhuang, and X. L. 0002. Adaptive unsupervised multi-view feature

selection for visual concept recognition. In ACCV (1), volume 7724, pages 343–357, 2012.
5. X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In NIPS, 2005.
6. J. Li, X. Hu, L. Jian, and H. Liu. Toward time-evolving feature selection on dynamic net-

works. In IEEE 16th International Conference on Data Mining (ICDM), December 12-15,
2016, Barcelona, Spain, pages 1003–1008, 2016.

7. J. Li, J. Tang, and H. Liu. Reconstruction-based unsupervised feature selection: An embed-
ded approach. In IJCAI, 2017.

8. Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu. Unsupervised feature selection using nonnegative
spectral analysis. In AAAI, 2012.



9. H. Liu and R. Setiono. Chi2: Feature selection and discretization of numeric attributes. In
In Proceedings of 7th IEEE Int’l Conference on Tools with Artificial Intelligence, 1995.

10. F. Nie, H. Huang, X. Cai, and C. H. Q. Ding. Efficient and robust feature selection via joint
l2, 1-norms minimization. In NIPS, pages 1813–1821, 2010.

11. M. Qian and C. Zhai. Robust unsupervised feature selection. In IJCAI, 2013.
12. L. Shi, L. Du, and Y.-D. Shen. Robust spectral learning for unsupervised feature selection.

In ICDM, 2014.
13. L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature selection

via dependence estimation. In ICML, volume 227, pages 823–830. ACM, 2007.
14. L. Sun, Z. Li, Q. Yan, W. Srisa-an, and Y. Pan. Sigpid: significant permission identification

for android malware detection. In Malicious and Unwanted Software (MALWARE), 2016
11th International Conference on, pages 1–8. IEEE, 2016.

15. J. Tang and H. Liu. Unsupervised feature selection for linked social media data. In KDD,
pages 904–912, 2012.

16. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society (Series B), 58:267–288, 1996.

17. X. Wei, B. Cao, and P. S. Yu. Unsupervised feature selection on networks: A generative
view. In AAAI, pages 2215–2221, 2016.

18. X. Wei, B. Cao, and P. S. Yu. Multi-view unsupervised feature selection by cross-diffused
matrix alignment. In International Joint Conference on Neural Networks, (IJCNN), pages
494–501, 2017.

19. X. Wei, S. Xie, and P. S. Yu. Efficient partial order preserving unsupervised feature selection
on networks. In SDM, pages 82–90, 2015.

20. X. Wei and P. S. Yu. Unsupervised feature selection by preserving stochastic neighbors. In
AISTATS, 2016.

21. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell., 31:210–227, 2009.

22. Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. l2, 1-norm regularized discriminative
feature selection for unsupervised learning. In IJCAI, pages 1589–1594, 2011.

23. Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervised learning. In
ICML, volume 227, pages 1151–1157, 2007.

24. Z. Zhao, L. Wang, and H. Liu. Efficient spectral feature selection with minimum redundancy.
In AAAI, 2010.


