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Abstract. In this study we investigate the recommendation problem
with trust and distrust relationships to overcome the sparsity of users’
preferences, accounting for the fact that users trust the recommendations
of their friends, and they do not accept the recommendations of their
foes. In addition, not only users’ preferences are sparse, but also users’
social relationships. So, we first propose an inference step with multi-
ple random walks to predict the implicit-missing trust relationships that
users might have in recommender systems, while considering users’ ex-
plicit trust and distrust relationships during the inference. We introduce
a regularization method and design an objective function with a social
regularization term to weigh the influence of friends’ trust and foes’ dis-
trust degrees on users’ preferences. We formulate the objective function
of our regularization method as a minimization problem with respect to
the users’ and items’ latent features and then we solve our recommen-
dation problem via gradient descent. Our experiments confirm that our
approach preserves relatively high recommendation accuracy in the pres-
ence of sparsity in both the users’ preferences and social relationships,
significantly outperforming several state-of-the-art methods.

Keywords: Recommender systems, collaborative filtering, social rela-
tionships, regularization.

1 Introduction

Recommender systems have widely followed the collaborative filtering strategy,
where similar-minded users tend to get similar recommendations [8]. In real-
world scenarios, the main limitation of collaborative filtering strategy is the
data sparsity of users’ preferences, significantly degrading the recommendation
accuracy. To overcome the data sparsity problem and generate trust-based rec-
ommendations, several models exploit the selections of trust friends [4, 12]. In
trust-based recommendations, models consider that people tend to rely on rec-
ommendations from their friends [6, 10]. In addition, in online networks users
may establish both trust and distrust relationships, while the vast majority of
users have unknown relationships. Epinions3, an e-commerce site for reviewing
3 http://www.epinions.com/
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and rating products, allows users to evaluate others based on the quality of their
reviews, and form trust and distrust relations with them. In Slashdot4 users
post news and comments, and tag other users as friends or foes. The analyses
in related studies conclude that users might accept recommendations from their
trusted friends, but will certainly exclude recommendations from their distrusted
foes [20, 21, 23]. In this respect, more recently a few attempts have been made to
exploit both trust and distrust relationships at the same time in recommender
systems [1, 2, 15, 19]. Following the collaborative filtering strategy, these models
assume that the latent features of trust/distrust users should be as close/far
as possible. However, such models exploit trust and distrust relationships in an
explicit manner, that is users’ direct friends or foes, and do not infer implicit
(indirect) social relationships that users establish in recommender systems. Due
to the presence of sparsity in social relationships, models that use trust and
distrust relationships exploit a limited number of social relationships, thus not
performing well as we will show in our experiments in Section 5.

Inferring social relationships of trust and distrust users is a challenging
task [20]. Given explicit social relationships, the goal is to infer the indirect
relationships of trust and distrust users. Trust relationships show strong tran-
sitivity, which means that inferring trust relationships can be computed in a
network of trust users, mainly because if two users a and b are friends and a
third user c is friend with a, then user c might be a friend of b as well. However,
recent studies showed that distrust is certainly not transitive [3, 21, 23]. There-
fore, distrust cannot be considered as the negative of trust when inferring users’
distrust relationships. Accounting for the transitivity of trust relationships, a
few prediction models have been proposed to infer the implicit trust relation-
ships, while exploiting explicit distrust relationships in their predictions [7, 20].
Nonetheless, these models are designed to predict missing-trust relationships and
not to generate recommendations. Therefore, a pressing challenge resides on how
to infer trust relationships of users with their distrust relationships to boost the
recommendation accuracy.

1.1 Contribution

To overcome the shortcomings of existing methods our contributions are summa-
rized as follows, first we infer implicit trust relationships with multiple random
walks while considering the users’ explicit distrust relationships during the infer-
ence. By significantly enhancing users’ relationships and reducing the number of
unknown relationships, we formulate a social regularization term to weigh users’
trust and distrust degrees and capture the correlations of users’ preferences with
those of their friends and foes. We introduce a regularization method and de-
sign an objective function as a minimization problem with respect to the latent
features, and solve our recommendation problem via gradient descent. Our ex-
periments show that the proposed approach is superior to all the competitors

4 https://slashdot.org/
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at different levels of sparsity in users’ preferences, as well as in users’ social
relationships.

The remainder of the paper is organized as follows, Section 2 reviews the
related work and in Section 3 we formally define our problem. Section 4 details
the proposed model, Section 5 presents the experimental results and Section 6
concludes the study.

2 Related Work

In trust-based recommender systems, many different strategies have been in-
troduced to exploit the selections of trust users. Jamali and Ester [6] extend
the probabilistic matrix factorization of [12] by weighting the user latent fac-
tors based on their trust relationships. In [10], a trust-based ensemble method
is presented to combine matrix factorization with a social-based neighborhood
model. In [5], a random walk model is introduced to incorporate a trust-based ap-
proach into a neighborhood-based collaborative filtering strategy. In this study,
authors run random walks on the trust network, formed by the trust relation-
ships, and then perform a probabilistic item selection strategy to generate rec-
ommendations. The random walk performs the search in the trust network and
the item selection part considers ratings on similar items to avoid going too deep
in the network. However, TrustWalker does not infer implicit (indirect) trust re-
lationships, as it performs random walks to generate recommendations using a
neighborhood-based model. Guo et al. [4] extend SVD++ [8], to learn both the
user preferences and the social influence of her friends. However, all the above
studies ignore users’ distrust relationships when generating recommendations,
an important factor to boost the recommendation accuracy [23]. Ma et al. [11]
present a social regularization method by sharing a common user-item matrix,
factorized by ratings and social relationships. This work introduces a trust-based
as well as a distrust-based model to exploit trust and distrust relationships in
each model separately. The goal of the trust-based model is to minimize the
distances of latent features between trust users, while the distrust-based model
tries to maximize the latent features’ distances between distrust users.

Recently, a few attempts have been made to exploit both trust and distrust
relationships at the same time in recommender systems. Forsati et al. [2] incor-
porate trust and distrust relationships into a matrix factorization framework, by
formulating a hinge loss function. This method assumes that the trust/distrust
relationships between users are considered as similarity/dissimilarity in their
preferences, and then the latent features are computed in a manner such that
the latent features of foes who are distrusted by a certain user have a guaranteed
minimum dissimilarity gap from the maximum dissimilarity of friends who are
trusted by this user. This means that when the user agrees on an item with
one of her trusted friends, she will probably disagree on the same item with her
distrusted foes, assuming a minimum predefined margin. In [1], a recommen-
dation strategy is introduced to rank the latent features of users, based on the
users’ trust and distrust relationships. This method also considers the neutral
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relationships (of users who have no relation to a certain user), aiming to rank
the user latent features after the trust relationships and before the distrust ones.
In [15] a signed graph is constructed, considering positive and negative weights
for the trust and distrust relationships, respectively. Then, a spectral clustering
approach is presented to generate clusters in the signed graph. The clusters are
extracted on condition that users with positive connections should lie close, while
users with negative ones should lie far. Following a joint non-negative matrix fac-
torization framework the final recommendations are generated, by co-factorizing
the user-item and user-cluster associations. Tang et al. [19] form a signed graph
with trust and distrust relationships and capture local and global information
from the graph. Local information reveals the correlations among a user and her
friends/foes, and the global information reveals the reputation of the user in the
whole social network, as users tend to trust users with high global reputation.
Then, they exploit both local and global information in a matrix factorization
technique to produce recommendations.

3 Problem Formulation

Let n and m be the numbers of users and items. Given a rating matrix R ∈
Rn×m, each entry Riq corresponds to the rating that user i has assigned to item
q, with i = 1 . . . n and q = 1 . . .m. If a user i has not rated an item q, then we set
Riq = 0. In our approach we follow the collaborative filtering strategy of matrix
factorization. This means that by factorizing the matrix R, the recommendations
are in its low-rank approximation R̂ ∈ Rn×m. Matrix R̂ can be calculated as
R̂ = UV>, where U ∈ Rn×d is the user factor matrix, and V ∈ Rm×d is
the item factor matrix with d the number of latent dimensions. To consider
users’ trust and distrust relationships, we also form a graph G with n = |V|
nodes and i, j ∈ V. Two nodes are connected with edges in the form (i, j) ∈ E .
The edges are considered weighted, and in our setting we consider positive and
negative weights to express trust and distrust relationships, respectively. Both
positive and negative weights are stored in an adjacency matrix A ∈ Rn×n.
In our approach we generate two different graphs, a graph G+ which contains
only the positive edges and a second graph G− with the negative ones. Given
E ≡ E+ ∪ E−, we compute two different adjacency matrices A+ ∈ Rn×n and
A− ∈ Rn×n, corresponding to the weights of the positive (i, j)+ ∈ E+ and
negative (i, j)− ∈ E− edges/relationships. In addition, ∀(i, j)− ∈ E− we set
(A−)ij = |Aij |, storing the absolute values of the negative weights. With this
setting, the goal of the proposed approach is formally defined as follows:

Definition 1 (Problem). “Given (i) the rating matrix R and (ii) the adja-
cency matrices A+ and A− with the trust and distrust relationships, the goal of
the proposed approach is first to infer the implicit trust relationships based on
users’ explicit trust and distrust relationships, and then compute the low-rank
approximation R̂ = UV> to generate the final recommendations.”
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4 Proposed Approach

4.1 Social Inference via Multiple Random Walks

To infer the implicit trust relationships, we perform random walks on the n
nodes in graph G+, by taking into account the distrust relationships in graph
G− during the inference. In particular, the proposed approach runs multiple
random walks on the graph G+ with the trust relationships and then filters out
the inferred trust relationships by considering the distrust relationships in graph
G−. The main reason that we avoid to perform random walks on graph G− is
that distrust is not transitive, as opposed to trust [7, 20, 21, 23]. Next, we present
the case of performing a single random walk on graph G+ and we show how to
perform multiple random walks to better infer the implicit trust relationships.

Single Random Walk. Given a source node sou and a target node tar in
graph G+, with (sou, tar) /∈ E+, the goal is to start a random walk from sou to
reach tar to infer their trust relationships, denoted as (A+)sou,tar. We assume
that the walk moves from one node to a neighbourhood node at each step, and at
time t has moved to node i. The walk chooses whether to move to another node
with probability ξt or terminate the walk with probability 1-ξt. In the case of
terminating the walk, the value (A+)sou,tar is returned only if edge (i, tar) ∈ E+,
and 0 otherwise. The transition probability of moving from a current node i to
another node j is calculated as follows:

p+(j|i) = (A+)ij/di (1)

where di =
∑

j (A+)ij is the degree of i. The transition matrix T+ ∈ Rn×n of a
random walk is given by

T+ = D−1
+ A+ (2)

where (D+)ii = di is the degree diagonal matrix, with D+ ∈ Rn×n. A vector
p(t)

+ ∈ Rn represents the visiting distribution over all n nodes at a certain time t.
With these settings, if the walk continues at the next time t+1, the distribution
vector will be updated as follows:

p(t+1)
+ = p(t)

+ ×T+ (3)

In the case of isolated users, random walks are not performed, as these users
have not expressed their social preferences.

Multiple Random Walks. Instead of performing a single walk, we run mul-
tiple random walks from a source node in graph G+ to better infer the implicit
trust relationships. The main reason that we can achieve better inference is that
multiple random walks start from the source user sou to seek more alternatives
for the implicit (indirect) relationship to the target user tar. Given the graph G+,
we define s as the total length of a single walk for which we recursively update
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the distribution vector p(s). For a target node tar we consider all its in-linked
edges, denoted by (A+)∗tar, that is the tar-th column vector of A+. With these
settings, the returned value for a random walk terminated at time s is:

(A+)sou,tar|s = p(s)(A+)∗tar (4)

Theoretically, we can perform random walks with infinite lengths from the source
node. Aggregating the multiple random walks from the source node we have:

(A+)sou,tar =
∞∑

t=1
ω+(t)p(0)

+ Tt
+(A+)∗tar (5)

where p(0)
+ is the starting distribution of a walk on G+ and ω+(t) expresses the

probability that a random walk will terminate at a certain time t:

ω+(t) = p+(s = t|ξ) = ξt

t−1∏
i=1

(1− ξi) (6)

Therefore, the adjacency matrix A+ with the inferred trust relationships is cal-
culated as follows:

A+ =
∞∑

t=1
ω+(t)Tt

+A+ (7)

In our implementation, we avoid long (infinite) walks on the graph, following the
idea of the “six degrees of separation”, that is most nodes can be reached with
a six step walk length [13]. This means that if a walk has reached more than six
steps, then the walk is terminated. In practice, we observed that random walks
do not reach more than 4 steps in our experiments with ξt = 0.85, equal to the
dampening factor of PageRank [14]. Next, the inferred trust relationships are
stored in matrix A+.

When performing multiple random walks on graph G+, the distrust rela-
tionships in graph G− are ignored. Consequently, an inferred trust relationship
between a source user sou and a target user tar in A+, might have a distrust
relationship between sou and tar in graph G−. Since users do not accept the
recommendations of distrust users [2, 7], we recompute matrix A+ by setting
A+ ← 0, if (A+)ij > 0∧ (A−)ij > 0, ∀i, j = 1 . . . n. Finally, the filtered trust re-
lationships and their positive weights are stored into the initial adjacency matrix
with the trust relationships, by setting A+ ← A+.

4.2 Regularization Method

To generate the recommendations in our regularization method, we have to com-
pute the low rank approximation R̂ based on the inferred trust relationships in
A+ and the distrust relationships in A−. We first capture the user-based sim-
ilarities using the rating matrix R. If users i and j have interacted with at
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least a common item q, then users i and j are connected based on their pref-
erences [22]. The preferences’ connections/similarities are stored in a similarity
matrix S ∈ Rn×n, whose ij-th entries are calculated as follows:

Sij =



m∑
q=1

RiqRjq√
m∑

q=1

R2
iq

√
m∑

q=1

R2
jq

, if users i and j are connected

0 , otherwise

(8)

with i, j = 1, . . . , n.
Next, we form the neighbourhoods N i

+ and N i
− based on the adjacency ma-

trices A+ and A−, respectively, where A+ contains the explicit as well as the
inferred implicit trust relationships. Given the latent vector Ui of user i and the
latent vector Uj of her friend j, with j ∈ N i

+, their distance ||Ui−Uj ||22 should
be as close as possible, weighted by the trust degree (A+)ij and the preference
similarity Sij . The reason that we consider the similarity between trust users i
and j is that trust friends do not necessarily have similar preferences [4]. The
higher the similarity between two friends the most likely would be that they
have similar preferences. Thus, we weigh the influence of trust friends i and j as
follows: ∑

j∈N i
+

(A+)ijSij ||Ui −Uj ||22 (9)

Accordingly, for a distrusted user k ∈ N i
−, we have to penalize their distance

||Ui −Uk||22, weighted by the distrust degree (A−)ik and their preference dis-
similarity 1− Sik as follows:

−
∑

k∈N i
−

(A−)ik(1− Sik)||Ui −Uk||22 (10)

By aggregating Eqs. (9) and (10), we have the following regularization term
with respect to a latent vector Ui, to measure the weighted influence of trust
and distrust relationships:

Ψ(Ui) =
∑

j∈N i
+

(A+)ijSij ||Ui −Uj ||22 −
∑

k∈N i
−

(A−)ik(1− Sik)||Ui −Uk||22

(11)

To compute the latent matrices U and V we formulate the following objective
function L as a minimization problem:

min
U,V

L(U,V) = ||R −UV>||2F + λ(||U||2F + ||V||2F ) + α

n∑
i=1

Ψ(Ui) (12)

where the second and third terms are the regularization term to avoid model
overfitting and the social regularizer of Eq. (11), respectively. Parameters λ and
α control the influences of the respective regularization terms.
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To optimize Eq. (12) we use a gradient-based strategy. As the term Ψ(Ui) in
Eq. (11) may become negative5, making the objective function L non-convex, we
define an auxiliary matrix H ∈ Rn×d. During the optimization of the objective
function L for the iteration iter and i = 1 . . . n we set Hiter

i = 1 if Ψ(Ui) > 0, and
0 otherwise. Thus, at the iteration iter we have the following objective function:

min
U,V

L(U,V) = ||R −UV>||2F + λ(||U||2F + ||V||2F )

+ α

n∑
i=1

Hiter
i

[ ∑
j∈N i

+

(A+)ijSij ||Ui −Uj ||22 −
∑

k∈N i
−

(A−)ik(1− Sik)||Ui −Uk||22
]

(13)

As L becomes convex with the auxiliary matrix Hiter, we follow a gradient-based
optimization strategy to calculate matrices/variables U and V. Given a learning
parameter η we have the following update rules:

Uiter+1
i ← Uiter

i − η ∂L

∂Uiter
i

, i = 1 . . . n

Viter+1
q ← Viter

q − η ∂L

∂Viter
q

, q = 1 . . .m
(14)

where the respective gradients at iteration iter are calculated as follows:

∂L

∂Uiter
i

= 2
m∑

q=1
IR
iq(U>i Vq −Riq)Vq + 2λUi

+ 2αHiter
i

∑
j∈N i

+

(A+)ijSij(Ui −Uj)

− 2αHiter
i

∑
k∈N i

−

(A−)ik(1− Sik)(Ui −Uk)

(15)

∂L

∂Viter
q

= 2
n∑

i=1
IR
iq(U>i Vq −Riq)Ui + 2λVq (16)

where IR
iq ∈ {0, 1}n×m is an indicator matrix, with IR

iq = 1 if Riq > 0 and
0 otherwise. Based on the gradients in Eqs. (15) and (16) we can solve the
minimization problem of Eq. (13) using the update rules in Eq. (14). Having
computed matrices U and V, we reconstruct the initial rating matrix R by
computing R̂ = UV> to generate the final recommendations.

5 If
∑

k∈N i
−

(A−)ik(1− Sik)||Ui −Uk||22 >
∑

j∈N i
+

(A+)ijSij ||Ui −Uj ||22.



Inference of Trust and Distrust in Recommender Systems 9

5 Experimental Evaluation

5.1 Experimental Setup

In our experiments, we use a real-world dataset from Epinions6 [3]. For com-
parison reasons, we conduct our experiments on a down-sampled dataset, at the
same scale as in [2, 15]. The down-sampled dataset contains n=119,867 users,
m=676,436 product-items and 12,328,927 ratings, including 452,123 trust and
92,417 distrust social relationships. The reason for selecting the dataset is that
it is among the most challenging datasets in the relevant literature, as it con-
tains many users and items with high sparsity7 in users’ preferences, as well as
it includes users’ trust and distrust relationships.

To evaluate the performance of the proposed method, we randomly select a
percentage of ratings (i, q) as a test set T , while the remaining ratings are used to
train our model. Following relevant studies [2, 11], we evaluate the performance
of our model in terms of Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), which are formally defined as follows

MAE =
∑

(i,q)∈T |Riq − R̂iq|
|T |

RMSE =

√√√√∑(i,q)∈T
(
Riq − R̂iq

)2

|T |

where R̂ is the prediction of our model e.g., the low rank approximation matrix,
and R is the rating matrix with the ratings of the test set T . The difference
between the two evaluation metrics is that RMSE emphasizes more in larger
prediction errors than MAE. We repeated our experiments five times and we
averaged our results over the five runs.

5.2 Compared Methods

In our experiments, we use the following baseline methods:

– NMF [9]: a baseline non-negative matrix factorization method, which does
not consider neither trust or distrust relationships.

– MF-distrust [11]: a matrix factorization strategy that incorporates the dis-
trust information, trying to maximize the user latent features of users who
are connected with a explicit distrust social relationship. This strategy does
not use trust relationships.

– TrustWalker [5]: a random walk model that exploits explicit trust relation-
ships in a neighborhood-based collaborative filtering strategy. This model
ignores users’ distrust relationships.

6 http://www.trustlet.org/epinions.html
7 It approximately includes 0.02% of all entries in the rating matrix R.
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– TrustSVD [4]: a model that extends SVD++ [8] to learn both the user
preferences and the social influence of her friends. This method does not
exploit distrust relationships as well.

We also compare the proposed approach with the following competitive strategies
that exploit both trust and distrust relationships:

– MF-TD [2]: a method that performs matrix factorization such that the
latent features of foes who are distrusted by a certain user have a guaranteed
minimum dissimilarity gap from the worst dissimilarity of friends who are
trusted by this user.

– JNMF-SG [15]: a method that co-factorizes user-item and user-cluster as-
sociations, by partitioning users into clusters with a spectral clustering ap-
proach based on users’ trust and distrust explicit relationships.

– RecSSN [19]: a recommendation method in social signed networks, that
considers trust and distrust explicit relationships when generating recom-
mendations. RecSSN captures both local and global information from the
signed graph and then exploits both types of information in a matrix factor-
ization scheme.

– RF : a variant of the proposed method, where we avoid the inference step of
Section 4.1 and use only the trust and distrust explicit (direct) relationships.
This variant is used to show the importance of the social inference step in
our regularization method, when implicit trust relationships are missing.

– MRW-RF : the proposed method that infers social relationships in our reg-
ularization method to exploit explicit and implicit relationships.

The parameters of the examined methods have been determined via cross-validation
and in our experiments we report the best results. The parameter analysis of
the proposed method is further studied in Section 5.5.

5.3 Comparison with State-of-the-Art

In Figure 1 we evaluate the examined models in terms of MAE and RMSE. To
show the negative effect of sparsity we train the models with different percent-
ages of ratings. In this set of experiments we use all social explicit relationships.
We observe that reducing the training set sizes degrades the recommendation
accuracy, indicated by larger errors of MAE and RMSE in all models. Compared
to baseline NMF, the trust-based models TrustWalker and TrustSVD are less
affected by the presence of sparsity in the reduced training sets, as they exploit
users’ trust explicit relationships. However, both TrustWalker and TrustSVD
ignore users’ distrust relationships, which explains their limited performance.
Also, MF-distrust can reduce the sparsity problem using the distrust relation-
ships. The main reason that MF-distrust performs lower than TrustWalker and
TrustSVD is that there are less users’ distrust relationships than trust ones in
the Epinions dataset (Section 5.1). This complies with several studies reporting
that users tend to establish less distrust relationships than trust ones [19, 20].
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Fig. 1: Effect on MAE and RMSE when varying the percentage of ratings in the
training set, using all explicit relationships.
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Clearly, all the recommendation strategies MF-TD, JNMF-SG, RecSSN, RF
and MRW-RF that exploit both trust and distrust relationships outperform the
baseline methods NMF, MF-distrust, TrustWalker and TrustSVD. The results
in Figure 1 reveal that it is important to exploit both trust and distrust rela-
tionships when generating recommendations. An interesting observation is that
our RF variant performs significant lower than the proposed MRW-RF approach
in all settings. This demonstrates the importance of social inference of implicit
relationships in our approach, as RF produces recommendations only with ex-
plicit trust and distrust relationships in the regularization method of Section 4.2.
Instead, the proposed MRW-RF approach efficiently infers the implicit trust re-
lationships and significantly enhances the explicit ones by a factor of 1.72 on
average in all five runs. As shown in Figure 1 MRW-RF beats all its competi-
tors, MF-TD, JNMF-SG and RecSSN, because the competitors use explicit trust
and distrust relationships and ignore the implicit trust relationships that users
might have. Using the paired t-test, we found that MRW-RF is superior over
the competitors in all runs, for p < 0.01. Moreover, as friends’ trust and foes’
distrust degrees do not necessarily match with users’ preferences, our regulariza-
tion method also weighs the influence of the implicit and explicit relationships,
which explains the high performance of MRW-RF in all settings. To verify this,
we re-ran MRW-RF without considering the terms Sij and 1− Sik in the social
regularization term Ψ(Ui) of Eq. (11). In our runs, we observed that the pre-
diction error metrics of MAE and RMSE were significantly increased by 11.29%
and 15.62%, respectively, indicating the importance of the weighting strategy in
the social regularization term to capture the correlations of users’ preferences
with trust and distrust degrees.

5.4 Impact of Social Relationships

Figure 2 shows the impact on MAE and RMSE when varying the percentage
of explicit social relationships in the training set. All models are trained with
50% of the ratings. In this set of experiments the explicit relationships, both
trust and distrust ones, are randomly removed from the training set to vary
the percentage of explicit relationships in 40, 60 and 80%. When downsizing
the relationships, we ensure that the same percentage of trust and distrust re-
lationships is removed. The baseline method NMF is used for reference, as its
performance is not influenced when varying the percentages of relationships.
Figure 2 demonstrates that all the social-based models are negatively affected
when using less relationships. Since state-of-the-art models use only explicit re-
lationships, they do not perform well, having high prediction errors in terms of
MAE and RMSE. When varying the percentages of explicit relationships, the
proposed MRW-RF approach preserves the recommendation accuracy relatively
high, as MRW-RF correctly infers the implicit relationships with the inference
step of Section 4.1. In the case of 40, 60 and 80% relationships, our inference
step significantly enhances the reduced relationships, by 3.28, 2.64 and 2.11, re-
spectively. Consequently, MRW-RF is less affected in the presence of sparsity
in social relationships. While state-of-the-art methods have limited performance
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Fig. 3: Effect on RMSE when varying (a) the social regularization parameter α,
(b) the regularization parameter λ and (c) the learning rate η.

as there are only a few relationships on which to train their models, MRW-RF
boosts the recommendation accuracy by efficiently capturing users’ similarity
preferences in both the implicit and explicit relationships.

5.5 Parameter Analysis

In Figure 3, we evaluate the influence of parameters α, λ and η. In this set of
experiments we train our model using 50% of the ratings as training set with
all social explicit relationships. Figure 3(a) presents the effect on RMSE with
changes of the α parameter in the objective function of Eq. (13). Parameter
α is varied from 0.1 to 0.9 by a step of 0.1. We observe that when α is in
the range of 0.4-0.6 the lowest error RMSE is achieved, thus we fix α to 0.5.
Out of this range, the RMSE metric is significantly increased, where higher
values of α make the selections of the social friends/foes dominate each user’s
personalized selections. On the other hand, lower values of α make the social
selections have less influence on the objective function of Eq. (13), thus not
handling well the data sparsity problem in users’ preferences. In Figure 3(b) we
study the effect of the regularization parameter λ in Eq. (13). We observe that
there is a drop on RMSE when λ = 1e − 03 , as higher/lower λ values result
in model overfitting/underfitting. In Figure 3(c) we vary the learning rate η of
the update rules of Eq. (14). Clearly, a more conservative learning strategy of
η = 1e− 4 is required, as for larger η values RMSE is significantly increased.

6 Conclusions

In this paper we presented MRW-RF, an efficient recommendation strategy to
exploit users’ trust and distrust relationships and solve the sparsity in both the
users’ preferences and social relationships. The two key factors of the proposed
approach are (i) the correct inference of the missing-implicit trust relationships
while considering users’ distrust relationships during the inference step, and (ii)
the capture of the influence of friends and trust degrees on users’ preferences in
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our regularization method. In the proposed inference step, MRW-RF efficiently
computes the trust degrees of implicit relationships and significantly enhances
the explicit ones. In doing so, the proposed approach handles the sparsity in
users’ relationships, which plays a crucial role on boosting the recommendation
accuracy when a part of the social relationships is not available. Then, in our
regularization method we weigh the influence of the inferred/implicit and ex-
plicit social relationships by taking into account the users’ preferences of friends
and foes. Hence, our proposed MRW-RF method achieves high recommendation
accuracy by exploiting the selection of the inferred and explicit friends, as well
as the selection of explicit foes. Our experiments demonstrate the superiority
of MRW-RF over several baselines when varying the sparsity in users’ prefer-
ences and in social relationships. By enhancing users’ social relationships in the
inference step and efficiently incorporating the trust and distrust degrees into
our regularization method, our approach significantly outperforms competitors
in all settings. As future work we plan to investigate the performance of social
inference of evolving trust and distrust relationships, to capture users’ preference
dynamics, a challenging task for recommender systems [16–18].

Acknowledgments. Dimitrios Rafailidis was supported by the COMPLEXYS
and INFORTECH Research Institutes of University of Mons.

References

1. Forsati, R., Barjasteh, I., Masrour, F., Esfahanian, A., Radha, H.: Pushtrust: An
efficient recommendation algorithm by leveraging trust and distrust relations. In:
Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Aus-
tria. pp. 51–58 (2015)

2. Forsati, R., Mahdavi, M., Shamsfard, M., Sarwat, M.: Matrix factorization with
explicit trust and distrust side information for improved social recommendation.
ACM Trans. Inf. Syst. 32(4), 17:1–17:38 (2014)

3. Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and
distrust. In: Proceedings of the 13th ACM International Conference on World
Wide Web, New York, NY, USA. pp. 403–412 (2004)

4. Guo, G., Zhang, J., Yorke-Smith, N.: TrustSVD: Collaborative filtering with both
the explicit and implicit influence of user trust and of item ratings. In: Proceedings
of the 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA. pp.
123–129 (2015)

5. Jamali, M., Ester, M.: TrustWalker : a random walk model for combining trust-
based and item-based recommendation. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Paris, France.
pp. 397–406 (2009)

6. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Proceedings of the 2010 ACM Conference
on Recommender Systems, Barcelona, Spain. pp. 135–142 (2010)

7. Jang, M., Faloutsos, C., Kim, S., Kang, U., Ha, J.: PIN-TRUST: fast trust prop-
agation exploiting positive, implicit, and negative information. In: Proceedings of
the 25th ACM International on Conference on Information and Knowledge Man-
agement, Indianapolis, IN, USA. pp. 629–638 (2016)



16 D. Rafailidis and F. Crestani

8. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA. pp. 426–434
(2008)

9. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Ad-
vances in Neural Information Processing Systems, Denver, CO, USA. pp. 556–562
(2000)

10. Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In:
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Boston, MA, USA. pp. 203–210 (2009)

11. Ma, H., Lyu, M.R., King, I.: Learning to recommend with trust and distrust rela-
tionships. In: Proceedings of the 2009 ACM Conference on Recommender Systems,
New York, NY, USA. pp. 189–196 (2009)

12. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using proba-
bilistic matrix factorization. In: Proceedings of the 17th ACM Conference on Infor-
mation and Knowledge Management, Napa Valley, California, USA. pp. 931–940
(2008)

13. Milgram, S.: The small world problem. Psychology Today 2 (1967)
14. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. In: Technical report, Stanford Digital Libraries SIDL-
WP-1999-0120 (1999)

15. Rafailidis, D.: Modeling trust and distrust information in recommender systems via
joint matrix factorization with signed graphs. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing, Pisa, Italy. pp. 1060–1065 (2016)

16. Rafailidis, D., Kefalas, P., Manolopoulos, Y.: Preference dynamics with multimodal
user-item interactions in social media recommendation. Expert Syst. Appl. 74, 11–
18 (2017)

17. Rafailidis, D., Nanopoulos, A.: Modeling the dynamics of user preferences in cou-
pled tensor factorization. In: Proceedings of the 8th ACM Conference on Recom-
mender Systems, Foster City, Silicon Valley, CA, USA. pp. 321–324 (2014)

18. Rafailidis, D., Nanopoulos, A.: Modeling users preference dynamics and side in-
formation in recommender systems. IEEE Trans. Systems, Man, and Cybernetics:
Systems 46(6), 782–792 (2016)

19. Tang, J., Aggarwal, C.C., Liu, H.: Recommendations in signed social networks.
In: Proceedings of the 25th ACM International Conference on World Wide Web,
Montreal, Canada. pp. 31–40 (2016)

20. Tang, J., Chang, Y., Aggarwal, C., Liu, H.: A survey of signed network mining in
social media. ACM Comput. Surv. 49(3), 42:1–42:37 (2016)

21. Tang, J., Hu, X., Chang, Y., Liu, H.: Predictability of distrust with interaction
data. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, Shanghai, China. pp. 181–190 (2014)

22. Tang, J., Hu, X., Liu, H.: Social recommendation: a review. Social Netw. Analys.
Mining 3(4), 1113–1133 (2013)

23. Victor, P., Cornelis, C., Cock, M.D., Teredesai, A.: Trust- and distrust-based rec-
ommendations for controversial reviews. IEEE Intelligent Systems 26(1), 48–55
(2011)


