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Abstract. String Kernel (SK) techniques, especially those using gapped
k-mers as features (gk), have obtained great success in classifying se-
quences like DNA, protein, and text. However, the state-of-the-art gk-SK
runs extremely slow when we increase the dictionary size (Σ) or allow
more mismatches (M). This is because current gk-SK uses a trie-based
algorithm to calculate co-occurrence of mismatched substrings resulting
in a time cost proportional to O(ΣM ). We propose a fast algorithm for
calculating Gapped k-mer Kernel using Counting (GaKCo). GaKCo uses
associative arrays to calculate the co-occurrence of substrings using cu-
mulative counting. This algorithm is fast, scalable to larger Σ and M ,
and naturally parallelizable. We provide a rigorous asymptotic analysis
that compares GaKCo with the state-of-the-art gk-SK. Theoretically, the
time cost of GaKCo is independent of the ΣM term that slows down the
trie-based approach. Experimentally, we observe that GaKCo achieves
the same accuracy as the state-of-the-art and outperforms its speed by
factors of 2, 100, and 4, on classifying sequences of DNA (5 datasets),
protein (12 datasets), and character-based English text (2 datasets). 1

Keywords: Fast Learning, String Kernels, Sequence Classification, Gapped
k-mer String Kernel, Counting Statistics

1 Introduction
Sequence classification is one of the most important machine learning tasks,

with widespread uses in fields like biology and natural language processing. Be-
sides accuracy, speed is a critical requirement for modern sequence classification
methods. For example, with the advancement of sequencing technologies, a mas-
sive amount of protein and DNA sequence data is produced daily [14]. There
is an urgent need to analyze these sequences quickly for assisting time-sensitive
experiments. Similarly, on-line information retrieval systems need to classify text
sequences, for instance when quickly assessing customer reviews or categorizing
documents to different topics.

In this paper, we focus on the String Kernels (SK) in the Support Vector Ma-
chine (SVM) framework for supervised sequence classification. SK-SVM meth-
ods have been successfully used for classifying sequences like DNA [12, 10, 1, 15],
protein [8] or character based natural language text [16]. They have provided
state-of-the-art classification accuracy and can guarantee nice asymptotic be-
havior due to SVM’s convex formulation and theoretical property [17]. Through

1 GaKCo is shared as an open source tool at https://github.com/QData/GaKCo-SVM
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comparing length-k local substrings (k-mers) and incorporating mismatches and
gaps, this category of models calculates the similarity (i.e., so-called kernel func-
tion) among sequence samples. Then, using such similarity measures, SVM is
trained to classify sequences. Recently, Ghandi et al. [6] developed the state-of-
the-art SK-SVM tool called gkm-SVM. gkm-SVM uses a gapped k-mer formu-
lation [7] that reduces the feature space considerably compared to other k-mer
based SK approaches.

Existing k-mer based SK methods can become very slow or even unfeasible
when we increase (1) the number of allowed mismatches (M) or (2) the size of the
dictionary (Σ) (detailed asymptotic analysis in Section 2). Allowing mismatches
during substring comparisons is important since most sequences in biology are
prone to mutations, i.e., insertions, deletions or substitution of sequence char-
acters. Also, the size of the dictionary varies from one sequence classification
domain to another. While DNA sequence is composed of only four characters
(Σ = 4), most other domains have bigger dictionary sizes like for proteins,
Σ = 20 and for character-based English text, Σ = 36. The state-of-the-art tool,
gkm-SVM, may work well for cases with small values of Σ and M (like for DNA
sequences with Σ = 4 and M < 4), however, its kernel calculation is slow for
cases like DNA with larger M , protein (dictionary size = 20), or character-based
English text sequences (dictionary size = 36). Its trie-based implementation, in
the worst case, scales exponentially with the dictionary size and the number of
mismatches (O(ΣM )). For example, gkm-SVM takes more than 5 hours to calcu-
late the kernel matrix for one protein sequence classification task with only 3312
sequences. This speed limitation hinders the practical applications of SK-SVM.

This paper proposes a fast algorithmic strategy, GaKCo: Gapped k-mer
Kernel using Counting to speed up the gapped k-mer kernel calculation. GaKCo
uses a “sort and count” approach to calculate kernel similarity through cumu-
lative k-mer counting [10]. GaKCo groups the counting of co-occurrence of sub-
strings at each fixed number of mismatches ({0, . . . ,M}) into an independent
procedure. Such grouping significantly reduces the number of updates on the
kernel matrix (an operation that dominates the time cost). This algorithm is
naturally parallelizable; therefore we present a multithread variation as our ul-
timate tool that improves the calculation speed even further.

We provide a rigorous theoretical analysis showing that GaKCo has a better
asymptotic kernel computation time cost than gkm-SVM. Our empirical experi-
ments, on three different real-world sequence classification domains, validate our
theoretical analysis. For example, for the protein classification task mentioned
above where gkm-SVM took more than 5 hours, GaKCo takes only 4 minutes.
Compared to GaKCo, gkm-SVM slows down considerably especially whenM ≥ 4
and for tasks with Σ ≥ 4. Experimentally, GaKCo provides a speedup by fac-
tors of 2, 100 and 4 for sequence classification on DNA (5 datasets), protein (12
datasets) and text (2 datasets), respectively, while achieving the same accuracy
as gkm-SVM. Fig. 1(a) compares the kernel calculation times of GaKCo (X-axis)
with gkm-SVM (Y-axis). We plot the kernel calculation times for the best per-
forming (g, k) parameters (see supplementary GitHub) for 19 different datasets.
We see that GaKCo is faster than gkm-SVM for 16 out of 19 datasets that we
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Fig. 1: (a) Kernel calculation times (log(seconds)) of GaKCo (X-axis) versus gkm-SVM
(Y-axis) for 19 different datasets - protein (12), DNA (5), and text (2). GaKCo is
faster than gkm-SVM for 16/19 datasets. (b) Empirical performance for the same
19 datasets (DNA, protein, and text) of GaKCo (X-axis) versus gkm-SVM (Y-axis).
GaKCo achieves the same AUC-scores as gkm-SVM.

have tested. Similarly, we plot the empirical performance (AUC scores or F1-
score) of GaKCo (horizontal axis) versus gkm-SVM (vertical axis) for the best
performing (g, k) parameters (see supplementary) for the 19 different datasets
in Fig. 1(b). It shows that the empirical performance of GaKCo is same as gkm-
SVM with respect to the AUC scores. In summary, the main contributions of
this work are:
– Fast: GaKCo is a novel combination of two efficient concepts: (1) reduced

gapped k-mer feature space and (2) associative array based counting method,
making it faster than the state-of-the-art gapped k-mer string kernel, while
achieving the same accuracy.

– GaKCo can scale up to larger values of m and Σ.
– Parallelizable: GaKCo algorithm lends itself to a naturally parallelizable

implementation.
– We also present a detailed theoretical analysis of the asymptotic time

complexity of GaKCo versus state-of-the-art gkm-SVM. This analysis, to
our knowledge, has not been reported before.

The rest of the paper is organized as follows: Section 2 introduces the details
of GaKCo and theoretically proves that asymptotically GaKCo runs faster than
gkm-SVM for a large dictionary or allowing for more mismatches. Then Section 3
provides the experimental results we obtain on three major benchmark appli-
cations: TFBS binding prediction (DNA), Remote Protein Homology prediction
(Proteins) and Text Classification (categorization and sentiment analysis). Em-
pirically, GaKCo shows consistent improvements over gkm-SVM in computation
speed across different types of datasets. When allowing a higher number of mis-
matches, the disparity in speed between GaKCo and the baseline becomes more
apparent. Table 1 summarizes the important notations we use. Due to the space
limitation, we discuss the related studies in the supplementary. Recently, Deep
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Table 1: List of symbols and their descriptions that are used.

Notations Descriptions

D Dataset under consideration, D = {x1, x2, . . . , xN}
N Number of sequences in a given dataset D

x, x′ Pair of strings in D that are compared for kernel calculation

K(x, x′) Kernel Function; Eq. (7) is for the gapped k-mer case

φ(x) Feature space representation of the string x

l Average length of sequences in a given dataset D

Σ Size of the dictionary of a given dataset D

g Length of the gapped instance or g-mer (specified by the user)

k Length of k-mer inside a gapped instance (specified by the user)

M M = (g−k); maximum number of mismatches allowed between two g-mers;

m Number of mismatches between two g-mers. m ∈ {0, . . .M}
cgk cgk =

∑M=(g−k)
m=0

(
g
m

)
.

u Number of unique g-mers in a given dataset D

z Number of unique g-mers with > 1 occurrence in a given dataset D

Nm(x, x′) Mismatch profile: number of matching g-mer pairs between x and x′ when
allowing m mismatches; see Eq. (9)

Cm(x, x′) Cumulative mismatch profile: number of matching {g −m}-mer pairs be-
tween x and x′. Each {g −m}-mer is generated from a g-mer by removing
characters from a total of m different positions; See Eq. (8)

η Average size of the nodelist of leafnodes in gkm-SVM’s trie. Each leafnode is
a unique g-mer whose nodelist includes all g-mers in the trie whose hamming
distance to this leaf is up to M ; See Eq. (10)

Neural Networks (NNs) have provided state-of-the-art performances for vari-
ous sequence classification tasks. We compare GaKCo’s empirical performance
with a state-of-the-art deep convolutional neural network (CNN) model [11].
On datasets with few training samples, GaKCo achieves an average accuracy
improvement of 20% over the CNN model (details in the supplementary).

2 Method

2.1 Background: Gapped k-mer String Kernels

The key idea of string kernels is to apply a function φ(·), which maps strings of
arbitrary length into a vectorial feature space of fixed dimension. In this space,
we apply a standard classifier such as Support Vector Machine (SVM) [17].
Kernel versions of SVMs calculate the decision function for an input x as:

f(x) =

N∑
i=1

αiyiK(xi, x) + b (1)

where N is the total number of training samples and K(·, ·) is a kernel function.
String kernels ([12, 10, 6]), implicitly compute K(x, x′) as an inner product in
the feature space:

K(x, x′) = 〈φ(x), φ(x′)〉, (2)

where x = (s1, . . . , s|x|). x, x
′ ∈ S. |x| denotes the length of the string x. S

represents the set of all strings composed from a dictionary Σ. The mapping
φ : S → Rp takes a sequence x ∈ S to a p-dimensional feature vector.
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The feature representation φ(·) plays a vital role in string analysis since it is
hard to describe strings as feature vectors. One classical method is to represent
it as an unordered set of k-mers, or combinations of k adjacent characters. A
feature vector indexed by all k-mers records the number of occurrences of each
k-mer in the current string. The string kernel using this representation is called
spectrum kernel [13], where the spectrum representation counts the occurrences
of each k-mer in a string. Kernel scores between strings are computed by taking
an inner product between corresponding “k-mer-indexed” feature vectors:

K(x, x′) =
∑
γ∈Γk

cx(γ) · cx′(γ) (3)

where γ represents a k-mer, Γk is the set of all possible k-mers, and cx(γ) is the
number of occurrences (normalized) of k-mer γ in string x. Many variations of
spectrum kernels ([10, 18, 9, 4]) exist in the literature that mostly extend it by
including mismatched k-mers when calculating the number of occurrences.

Spectrum kernel and its mismatch variations generate extremely sparse feature
vectors for even moderately sized values of k, since the size of Γk is Σk. To solve
this issue, Ghandi et al. [7] introduced a new set of feature representations,
called gapped k-mers. It is characterized by two parameters: (1) g, the size of a
substring with gaps (we call this gapped instance as g-mer hereafter) and (2) k,
the size of non-gapped substring in a g-mer (we call it k-mer). The number of
gaps is (g− k). The inner product to compute the gapped k-mer kernel function
includes sum over all possible k-mer feature counts obtained from the g-mers:

K(x, x′) =
∑
γ∈Θg

cx(γ) · cx′(γ) (4)

where γ represents a k-mer, Θg is the set of all possible gapped k-mers that can
appear in all the g-mers (each with (g− k) gaps) in a given dataset (denoted as
D hereafter) of sequence samples.

This formulation’s advantage is that it drastically reduces the number of k-
mers to consider. If we sum over all k-mers, as in Eq. (3), each of the

(
g
k

)
“non-

gap” positions in the g-mer may be filled with any of Σ letters. Thus, the sum
has

(
g
k

)
Σk terms — the number of possible gapped k-mers. This feature space

grows rapidly with both Σ and k. In contrast, Eq. (4) (implemented as gkm-
SVM [6]) includes only those k-mers whose gapped formulation has appeared in
the dataset, D. Θg includes all unique g-mers of the dataset D, whose size |Θg|
is normally much smaller than

(
g
k

)
Σk because the new feature space is restricted

to only observable gapped k-mers in D. Ghandi et al. [6] use this intuition to
reformulate Eq. (4) into:

K(x, x′) =

l1∑
i=0

l2∑
j=0

hgk(gxi , g
x′

j ) (5)

For two sequences x and x′ of lengths l1 and l2 respectively. gxi and gx
′

j are the

ith and jthg-mers of sequences x and x′ (i.e., gxi is a continuous substring of x
starting from the i-th position and ending at the (i + g − 1)th position of x).
hgk represents the inner product (or similarity) between gxi and gx

′

j using the

co-occurrence of gapped k-mers as features. hgk(gxi , g
x′

j ) is non-zero only when

gxi and gx
′

j have common k-mers.
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Definition 1. g-pairm(x, x′) denotes a pair of g-mers (gx1 , g
x′

2 ) whose Hamming
distance is exactly m. gx1 is from sequence x and gx

′

2 is from sequence x′.

Each g-pairm(.) has
(
g−m
k

)
common k-mers, therefore its hgk can be directly

calculated as hgk(g-pairm) =
(
g−m
k

)
. Ghandi et al. [6] formulate this observation

formally into the coefficient hm:

hm =

{(
g−m
k

)
, if g −m ≥ k

0, otherwise.
(6)

hm describes the co-occurrence count of common k-mers for each possible g-
pairm(.) in D. hm > 0 only for cases of m ≤ (g − k) or (g −m) ≥ k. This is
because there will be no common k-mers when the number of mismatches (m)
between two g-mers is more than (g − k). Now we can reformulate Eq. 5 by
grouping g-pairsm(x, x′) with respect to different values of m. This is because
g-pairsm(.) with same m contribute the same number of co-occurrence counts:
hm. Thus, Eq. 5 can be adapted into the following compact form:

K(x, x′) =

g−k∑
m=0

Nm(x, x′)hm (7)

Nm(x, x′) represents the number of g-pairm(x, x′) between sequence x and x′.
Nm(x, x′) is named as mismatch profile by [6]. Now, to compute kernel function
K(x, x′) for gapped k-mer SK, we only need to calculate Nm(x, x′) for m ∈
{0, . . . g − k}, since hm can be precomputed 2. The state-of-the-art tool gkm-
SVM [6] calculates Nm(x, x′) using a trie based data structure that is similar to
[12] (with some modifications, details in Section 2.3).

2.2 Proposed: Gapped k-mer Kernel with Counting (GaKCo)

In this paper, we propose GaKCo, a fast and novel algorithm for calculating
gapped k-mer string kernel. GaKCo provides superior time performance over the
state-of-the-art gkm-SVM and is different from it in three aspects:
– Data Structure. gkm-SVM uses a trie based data structure (plus a separate

nodelist at each leafnode) for calculating Nm (see Figure 2(c)). In contrast,
GaKCo uses simple arrays with a “sort-and-count” approach.

– Algorithm. GaKCo performs g-mer based cumulative counting of co-occurrence
to calculate Nm.

– Parallelization. GaKCo groups computations for each value of m into an
independent function, making it naturally parallelizable. We, therefore, pro-
vide a parallel version that uses multithread implementation.

Intuition : When calculating Nm between all pairs of sequences in D for each
value of m (m ∈ {0, . . . ,M = g − k}), we can use counting to process all g-
pairsm(.) (details below) from D together. Then we can calculate Nm from
such count statistics of g-pairsm(.). This method is entirely different from gkm-
SVM that uses a trie to organize g-mers such that each leafnode’s (a unique
g-mer’s) nodelist points to its mismatched g-mer neighbors in D.

2 For convenience, we will occasionally identify the map Nm(·, ·) with the N×N matrix
Nm, consisting of the application of Nm to each pair of sequences x, x′ ∈ D. This
convention is also followed for the kernel function, K(·, ·)→ K, and the cumulative
mismatch profile (introduced later), Cm(·, ·)→ Cm.
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Fig. 2: (a) Overview of GaKCo algorithm for calculating mismatch profile Nm(S, T ),
where S = ACACA and T = AAACA, and g = 3 forming g-mers {ACA,CAC,ACA}
and {AAA,AAC,ACA} respectively. [Step 1] For m = 0, all g-mers are sorted lexico-
graphically. [Step 2] Nm=0(S, T ) is calculated directly by sorting and counting. [Step 3]
For m = 1, we perform over counting of the g− 1-mers by picking 1 position at a time
(from

(
g=3
1

)
positions) and removing symbols to obtain (g − 1)-mers. [Step 4] We sort

and count to find the number of matching (g−1)-mers for each picked position. [Step 5]
Summing up over all

(
g=3
1

)
positions, we get cumulative mismatch profile Cm=1. [Step

6] Using Eq. 9 we get Nm=1(S, T ) = 3 from Cm=1(S, T ) = 9 and Nm=0(S, T ) = 2.
This count is equal to the actual number of pairs of g-mers at Hamming distance
m = 1 between s and t (i.e. {ACA : s/2, AAA : t/1}, {CAC : s/1, AAC : t/1}). A case
demonstration of (b) the overcounting when calculating Cm=1 (c) two leafnode g-mers
and associated nodelist for leaf {ACA} in the trie used by gkm-SVM.

Algorithm GaKCo calculates Nm(x, x′) as follows (pseudo code: Algorithm 1):
1. GaKCo first extracts all possible g-mers from all the sequences in D and

puts them in a simple array. Given that there are N number of sequences
with average length l 3, the total number of g-mers is N × (l − g + 1) ∼ Nl
(see Fig. 2 (a)).

2. Nm=0(x, x′) represents the number of g-pairm=0(x, x′) (pairs of g-mers
whose Hamming distance is 0) between x and x′. To compute Nm=0(xi, xj)
∀i,∀j = 1, ..., N , GaKCo sorts all the g-mers lexicographically (see Fig. 2(a)
[Step 1]) and counts the occurrences (if > 1) of each unique g-mer. Then
we use these counts and the associated indexes of sequences to update all
the kernel entries for sequences that include the matching g-mers (Fig. 2(a)
[Step 2]). This computation is straight-forward and the sort and count step
takes O(gNl) time cost while the kernel update costs O(zN2) (at the worst
case). Here, z is the number of g-mers that occur > 1 times.

3 A simplification of real world datasets in which sequence length varies across samples
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3. For cases when m = 1, . . . (g − k), we use a statistics measure Cm(x, x′),
called cumulative mismatch profile between two sequences x and x′. This
measure describes the number of matching (g −m)-mers between x and x′.
Each (g − m)-mer is generated from a g-mer by removing a total number
of m positions. We can calculate the exact mismatch profile Nm from the
cumulative mismatch profile Cm for m > 0 (see Step 4).
By sorting the lists of g-mers with m ignored entries, we compute Cm. First,
we first pick m positions and remove the symbols in those positions from all
observed g-mers, generating a list of (g −m)-mers (Fig. 2 (a) [Step 3]). We
then sort and count this list to get the number of matching (g − m)-mers
(Fig. 2 (b) [Step 4]). For the sequences that have matching (g−m)-mers, we
add the counts into their corresponding entries in matrix Cm. This sequence
of operations is repeated for all

(
g
m

)
selections of m positions. Then, Cm is

equal to the sum of counts from all
(
g
m

)
runs (Fig. 2 [Step 5]).

4. We compute Nm using Cm and Nj for j = 0, . . . ,m− 1.
Given two g-mers g1 and g2, we remove symbols from the same set of m
positions of both g-mers to get two (g−m)-mers: g′1 and g′2. If the Hamming
distance between g′1 and g′2 is zero, then we can conclude that the Hamming
distance between the original two g-mers is less than or equal to m (formal
proof in supplementary). For instance, Cm=1(x, x′) records the statistic of
matching (g − 1)-mers between x and x′. It includes the matching statistics
of all g-mer pairs with Hamming distance exactly 1, but it also over-counts
the matching statistics of all g-mer pairs with Hamming distance 0. This is
because the matching g-mers for m = 0 also match for m = 1 and contribute
to the matching statistics

(
g
1

)
times! This over-counting occurs for other

values of m as well. Therefore we can calcualte the cumulative mismatch
profile Cm as: ∀m ∈ {0, . . . , g − k}

Cm = Nm +

m−1∑
j=0

(
g − j
m− j

)
Nj (8)

We demonstrate this over-counting in Fig. 2(b). Rearranging Eq. 8, we get
the exact mismatch profile Nm as:

Nm = Cm −
m−1∑
j=0

(
g − j
m− j

)
Nj (9)

We subtract Nj from Cm to compensate for the over-counting described
above.

Parallelization: For each value of m from {0, . . .M = g − k}, calculating Cm

is independent from other values of m. Therefore, GaKCo’s algorithm can be
easily revised into a parallel version. Essentially, we just need to revise Step
9 in Algorithm 1 (pseudo code) — “For each value of m” — into, “For each
value of m per machine/per core/per thread”. In our current implementation,
we create a thread for each value of m from {0, . . .M = g − k} and calculate
Cm in parallel. In the end, we compute the final kernel matrix K using all the
resulting Cm matrices. Fig. 4 show the improvement of kernel calculation speed
of the multi-thread version over the single-thread implementation of GaKCo.
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2.3 Theoretical Comparison of Time Complexity

In this section, we conduct asymptotic analysis to compare the time complex-
ities of GaKCo with the state-of-the-art toolbox gkm-SVM.

Time Complexity of GaKCo: The time cost of GaKCo splits into two groups:
(1) Pre-processing: those operations that indirectly update the matching statis-
tics among sequences; (2) Kernel updates: those operations that directly update
the matching statistics among sequences.

Pre-processing: For each possible m (m ∈ {0, . . .M = g − k}), GaKCo needs
to choose m positions for symbol removing (Fig. 2 (a) [Step 3]), and then sort
and count the possible (g−m)-mers from D (Fig. 2 (a) [Step 4]). Therefore the

time cost of pre-processing is O(ΣM=g−k
m=0

(
g
m

)
(g−m)Nl) ∼ O(ΣM

m=0

(
g
m

)
gNl). To

simplifying notations, we use cgk to represent cgk =
∑M=(g−k)
m=0

(
g
m

)
hereafter.

Kernel Updates: These operations update the entries of Cm or Nm matrices
when GaKCo finishes each round of counting the number of matching (g −m)-
mers. Assuming z denotes the number of unique (g −m)-mers that occur > 1
times, the time cost of kernel update operations is (at the worst case) equivalent
to O(ΣM

m=0

(
g
m

)
zN2) ∼ O(cgkzN

2). Therefore, the overall time complexity of
GaKCo is O(cgk[gNl + zN2]).

gkm-SVM Algorithm: Now we introduce the algorithm of gkm-SVM briefly.
Given that there are N sequences in a dataset D, gkm-SVM first constructs a trie
recording all the unique g-mers in D. Each leafnode in the trie stores a unique
g-mer (more precisely by its path to the rootnode) of D. We use u to denote the
total number of the unique g-mers in this trie. Next, gkm-SVM traverses the tree
in a depth-first ordering. For each leafnode (like ACA in (Fig. 2 (c)), it maintains
a nodelist that includes all those g-mers in D whose Hamming distance to the
leafnode g-mer ≤ M . When accessing a leafnode, all mismatch profile matrices
Nm(x, x′) for m ∈ {0, . . . ,M = (g − k)} are updated for all possible pairs of
sequences x and x′. Here x consists of the g-mer of the current leafnode (like
S/ACA in (Fig. 2 (c)). x′ belongs to the nodelist ’s sequence list. x′ includes a
g-mer whose Hamming distance from the leafnode is m (like T/ACA(m = 0) or
T/AAA(m = 1) in (Fig. 2 (c)).

Time Complexity of gkm-SVM: We also split operations of gkm-SVM into
those indirectly (pre-processing) or directly (kernel-update) updating Nm.

Pre-processing: To construct the trie, gkm-SVM iterates over every possible
starting position for a g-mer. Given, there are N sequences each of average length
l, then there are approximately Nl starting positions. Furthermore, each g-mer
must be inserted into the trie (g steps). Therefore, the time taken to construct
the trie is O(gNl). Besides, for each node (a unique g-mer) in the trie, the
algorithm maintains a list of pointers that point to all other g-mers in the trie
whose hamming distance to this node is M . Let the number of such g-mers be
η and total number of nodes are ug, then this operation costs O(ηug).

Kernel Update: For each leafnode of the trie (total u nodes), for each g-mer in
its nodelist (assuming average size of nodelist is η), gkm-SVM uses the matching
count among g-mers to update involved sequences’ entries in Nm (if Hamming
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Table 2: Comparing time complexity.
gvm-SVM’s time cost is O(gNl + ηug +
ηuN2). GaKCo’s time complexity is
O(cgk[gNl + zN2]). In gkm-SVM the
ηuN2 dominates, while the cgkzN

2 term
dominates for GaKCo.

GaKCo gkm-SVM

Pre-processing cgkgNl gNl + ηug

Kernel updates cgkzN
2 ηuN2

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7

lo
g 

(  
   

)

M=(g-k)
DNA(  =4) Protein(   =20) Text (  =36)

u ~600,000

Fig. 3: With a growing g− k, the growth
curve of η (Eq. (10): the estimated
nodelist size in gkm-SVM). Both argu-
ments of the min function are plotted;
η grows exponentially until cgk(Σ − 1)M

exceeds the number of unique g-mers, u.

Algorithm 1 GaKCo

Require: L, g, k . L=Array list of g-mers
1: procedure CalculateKernel(L,g,k)
2: M ← g − k
3: N←MismatchProfile(L,g,M)
4: K ← 0
5: for m : 0→M do
6: hm ←

(
g−m

k

)
7: K ← K + Nm · hm

8: procedure MismatchProfile(L,g,M)
9: for m : 0→M do . Parallel threads

10: Cm ← 0 . Cumulative Profile
11: npos ←

(
g
m

)
. Number of positions

12: for i : 0→ npos do
13: Ci

m ← 0
14: Li ← removePosition(L, i)
15: Li ← sort(Li)
16: Ci

m ← countAndUpdate(Li)
17: Cm ← Cm + Ci

m

18: for m : 0→M do
19: Nm ← Cm

20: for j : 0→ m− 1 do
21: Nm ← Nm −

(
g−j
m−j

)
Nj

return N . N = [N0, . . . , NM ]

Ensure: K . Kernel Matrix

distance between two g-mers is m). Therefore the time cost is O(ηuN2) (at the
worst case). Essentially η represents on average the number of unique g-mers (in
the trie) that are at a Hamming distance up to M from the current leafnode. η
can be formulated as:

η = min

u,M=(g−k)∑
m=0

(
g

m

)
(Σ − 1)m

 ∼ min
(
u, cgk(Σ − 1)M

)
(10)

Fig. 3 shows that η grows exponentially to M until reaching its maximum u.
The total complexity of time cost from gkm-SVM is thus O(gNl+ηug+uηN2).

Comparing Time Complexity of GaKCo with gkm-SVM: Table 2 com-
pares the asymptotic time cost of GaKCo with gkm-SVM. In gkm-SVM the
term O(ηuN2) dominates the overall time asymptotically. For GaKCo the term
O(cgkzN

2) dominates the time cost asymptotically. For simplicity, we assume
that z = u even though z ≤ u. Upon comparing O(η × uN2) of gkm-SVM with
O(cgk×uN2) of GaKCo, clearly the difference lies between the terms η and cgk.
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Table 3: Details of datasets used for different prediction tasks. All tasks, except WebKB,
are binary classification tasks. WebKB is a multi-class (4) classification dataset.

Training Testing Sample properties

Prediction Task Repo Datasets Pos seq Neg seq Pos seq Neg seq N Σ Max(l)

TF Binding Site
(DNA)

ENCODE

CTCF

1000 1000 1000 1000 4000 5 100
EP300
JUND
RAD21
SIN3A

Remote Protein Homology
(Protein)

SCOP

1.1 1150 1189 8 1227 3574

20 905
1.34 866 1209 6 1231 3312
2.19 110 1235 9 1206 2560
2.31 1063 1235 8 1194 3500
2.1 4763 1229 120 950 7062
2.34 286 1215 6 1231 2738
2.41 192 1235 6 1213 2646
2.8 56 1185 8 1231 2480
3.19 922 1181 7 1231 3341
3.25 1187 1208 11 1231 3637
3.33 466 1214 7 1231 2918
3.50 105 1231 8 1205 2549

Text Classification
Stanford Treebank Sentiment 3883 3579 877 878 9217 36 260
Dataset from [2] WebKB 335, 620, 744, 1083 166, 306, 371, 538 4163 36 14218

In gkm-SVM, for a given g-mer, the number of all possible g-mers that are
at a distance M from it is cgk(Σ − 1)M . That is because

(
g
M

)
positions can be

substituted with (Σ−1)M possible characters. This means η grows exponentially
with the number of allowed mismatches M . We show the trend of function
f = cgk(Σ − 1)M in Fig. 3 for three different applications - TF-DNA (Σ = 4),
SCOP-protein (Σ = 20) and text (Σ = 36) when varying the values of M for
g = 10.

However, in real-world datasets, η is upper bounded by the number of unique
g-mers in a dataset: u. We show this by thresholding the curves in Fig. 3 at
u = 6 × 104, which is the average observed value of u across multiple datasets.
This means, two possible cases for comparing η with cgk:
– When η ∼ cgk(Σ − 1)M : For cases whose dictionary size Σ is small (e.g. 4),
cgk(Σ − 1)M is mostly smaller than u. Therefore η will be close to cgk(Σ −
1)M . This indicates the costs of gkm-SVM grow with a speed proportional
to ΣM . In contrast, the term cgk of GaKCo is independent of the size Σ.

– When η ∼ u: For cases whose Σ is larger than 4, cgk(Σ − 1)M gets larger
than u for M ≥ 4. Therefore η is approximately by u (the number of unique
g-mers in the trie built by gkm-SVM). The comparison between u and cgk
then depends on the specific application. The size u depends on data, but
normally grows fast for M ≥ 4. For example, for one of the SCOP datasets,
when g = 10, the count of unique g-mers u = 6 × 104 at M = 4 (close to u
shown in Fig. 3). This means η = 6× 106 for gkm-SVM while for the same
case cgk = 210 for GaKCo. The former is approximately 300 times higher
than GaKCo.

3 Experiments

3.1 Experimental Setup

19 different sequence datasets: We perform 19 different classification tasks
to evaluate the performance of GaKCo. These tasks belong to three categories:
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(1) Transcription Factor (TF) binding site prediction (DNA dataset), (2) Remote
Protein Homology prediction (protein dataset), and (3) Character-based English
text classification (text dataset). Table 3 summarizes of data statistics of all
datasets we used. Details of these datasets and their associated applications are
present in the supplementary.

Baselines: We compare the kernel calculation times and empirical performance
of GaKCo with gkm-SVM [6]. We also compare GaKCo to the CNN implemen-
tation from [11] for all the datasets (results in supplementary).

Classification: After calculation, we input the N × N kernel matrix into an
SVM classifier as an empirical feature map using a linear kernel in LIBLINEAR
[5]. Here N is the number of sequences in each dataset. For the multi-class
classification of WebKB data, we use the multi-class version of LIBSVM [3].

Model parameters: We vary the hyperparameters g ∈ {7, 8, 9, 10} and k ∈
{1, 2, . . . , g− 1} of both GaKCo and gkm-SVM. M = (g− k) for all these cases.
We also tune the hyperparameter C ∈ {0.01, 0.1, 1, 10, 100, 1000} for the SVM.
We present the results for the best g, k, and C values based on the empirical
performance metric.

Evaluation Metrics: Running time: We compare the kernel calculation times
of GaKCo and gkm-SVM in seconds. All run-time experiments were performed
on an AMD OpteronTM Processor 6376 @ 2.30GHz with 250GB memory.

Empirical performance: We use the Area Under Curve (AUC) score (from
the Receiver Operating Characteristic (ROC) curve) as our empirical evaluation
metric for 18 binary classification tasks. We report the results of WebKB multi-
class classification using micro-averaged F1 score.

3.2 Experimental Results

GaKCo is as accurate as gkm-SVM: Fig. 1 (b) demonstrated that GaKCo
achieves the same empirical performance as gkm-SVM across all 19 tasks (on
AUC scores or F1-score). This is because GaKCo’s gapped k-mer formulation is
the same as gkm-SVM but with an improved (faster) implementation. Besides,
in the supplementary, we also compare GaKCo’s empirical performance with a
state-of-the-art CNN model [11]. For 16/19 tasks, GaKCo outperforms the CNN
model with an average of ∼ 20% improvements.

GaKCo scales better than gkm-SVM for larger dictionary size (Σ) and
larger number of mismatches (M): Fig. 1(a) shows that GaKCo is faster
than gkm-SVM for 16/19 tasks. The three tasks for which GaKCo cost similar
time in kernel calculation as gkm-SVM are three DNA sequence prediction tasks.
This is as expected since these tasks have a smaller dictionary (Σ = 5) and thus,
for a small number of allowed mismatches (M) gkm-SVM gives comparable speed
performance as GaKCo.

Fig. 4 shows the kernel calculation times of GaKCo versus gkm-SVM for the
best-performing g and varying k ∈ {1, 2, . . . (g−1)} for three binary classification
datasets: (a) EP300 (DNA), (b) 1.34 (protein), and (c) Sentiment (text) respec-
tively. We select these three datasets as they achieve the best AUC scores out of
all 19 tasks (see supplementary). We fix g and vary k to show time performance
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Fig. 4: Kernel calculation times (lower is better) for best g and varying k with M =
(g − k) = {1, 2, . . . g − 1} hyperparameters for (a) EP300 (DNA,Σ = 5), (b) 1.34
(protein, Σ = 20), and (c) Sentiment (text, Σ = 36) datasets. The best performing
hyperparameters (g, k or M = (g − k)) are highlighted as red colored dashed lines.
GaKCo (single thread) outperforms gkm-SVM for a large dictionary size (Σ > 5) and
a large number of mismatches M ≥ 4. The final GaKCo (multi-thread) implementation
further improves the performance. For protein dataset (b) gkm-SVM takes > 5 hours
to calculate the kernel, while GaKCo calculates it in 4 minutes.

for any number of allowed mismatches from 1 to g−1. For GaKCo, the results are
shown for both single-thread and the multi-thread implementations. We refer to
the multi-thread implementation as GaKCo because that is our final code ver-
sion. Our results show that GaKCo (single-thread) scales better than gkm-SVM
for a large dictionary size (Σ) and a large number of mismatches (M). The final
version of GaKCo (multi-thread) further improves the performance. Details for
each dataset are as follows:
– DNA dataset (Σ = 5): In Fig. 4 (a), we plot the kernel calculation times

for best g = 10 and varying k with M ∈ {1, 2, . . . 9} for EP300 dataset.
As expected, since the dictionary size of DNA dataset (Σ) is small, gkm-
SVM performs fast kernel calculations for M = (g − k) < 4. However, for
large M ≥ 4, its kernel calculation time increases considerably compared to
GaKCo. This result connects to Fig. 3 in Section 2, where our analysis showed
that the nodelist size becomes closer to u as M increases, thus increasing
the time cost.

– Protein dataset (Σ = 20): Fig. 4 (b), shows the kernel calculation times
for best g = 10 and varying k with M = (g − k) ∈ {1, 2, . . . 9} for 1.34
dataset. Since the dictionary size of protein dataset (Σ) is larger than DNA,
gkm-SVM’s kernel calculation time is worse than GaKCo even for smaller
values of M < 4. This also connects to Fig. 3 where the size of nodelist ∼ u
even for small M for protein dataset, resulting in higher time cost. For best-
performing parameters g = 10, k = 1(M = 9), gkm-SVM takes 5 hours to
calculate the kernel, while GaKCo uses less than 4 minutes.

– Text dataset (Σ = 36): Fig. 4 (c), shows the kernel calculation times for best
g = 8 and varying k with M ∈ {1, 2, . . . 7} for Sentiment dataset. For large
M ≥ 4, kernel calculation of gkm-SVM is slower as compared to GaKCo. One
would expect that with large dictionary size (Σ) the performance difference



14 R. Singh et. al.

1

1.5

2

2.5

3

3.5

4

4.5

5

=5 (DNA) =20 (Protein) =36 (Text)

Av
er

ag
e 

ke
rn

el
 c

al
cu

la
tio

n 
tim

e
 (l

og
 (s

ec
on

ds
))

Dictionary Size ( ) 

GaKCo gkm-SVM

(a)

0

0.5

1

1.5

2

2.5

3

3.5

DNA 
(EP300)

Protein 
(1.34)

Text 
(Sentiment)

DNA 
(EP300)

Protein 
(1.34)

Text 
(Sentiment)

GaKco gkm-SVMK
er

ne
l c

al
cu

la
tio

n 
tim

e 
(lo

g(
se

co
nd

s)
)

N=100 N=250 N=500 N=750

(c)(b)

0

200

400

600

800

1000

1200

1400

1600

A
ve

ra
ge

 k
er

ne
l c

al
cu

la
tio

n 
tim

e 
(s

ec
on

ds
)

GaKCo (Multithread) GaKCo (Single Thread)

=5 (DNA) =20 (Protein) =36 (Text)
Dictionary Size ( ) 

Fig. 5: Average kernel calculation times (lower is better) (a) for the best performing
(g, k) parameters for DNA (Σ = 5), protein (Σ = 20), and text (Σ = 36) datasets.
gkm-SVM slows down considerably for protein and text datasets but GaKCo is con-
sistently faster for all three datasets. (b) across DNA (5), protein (12) and text (2)
datasets. Multi-thread GaKCo implementation improves the kernel calculation speed of
the single-thread GaKCo by a factor of 2. (c) Kernel calculation times (lower is better)
of GaKCo and gkm-SVM for best performing parameters (g, k) for: EP300 (DNA), 1.34
(protein), and Sentiment (text) datasets. Length of the sequences for all three datasets
is fixed to l = 100 and number of sequences are varied for N ∈ {100, 250, 500, 750}.
With increasing number of sequences, the increase in kernel calculation time is more
drastic for gkm-SVM than for GaKCo across all three datasets.

will be same as that for protein dataset. However, unlike protein sequences,
where the substitution of all 20 characters in a g-mer is roughly equally
likely, text dataset has a more skewed underlying distribution. The chance
of substituting some characters in a g-mer are higher than other characters
for English text. For example, in a given g-mer “my nam”, the last position is
more likely to be occupied by ‘e’ than ‘z’. Though the dictionary size is large
here, the growth of the nodelist is restricted by the underlying distribution.
While GaKCo’s time performance is consistent across all three datasets,
gkm-SVM’s time performance varies due to the distribution properties.

According to our asymptotic analysis in Section 2, GaKCo should always be
faster than gkm-SVM. However, in Fig. 4 we notice that for certain cases (e.g.
for DNA when M < 4 in Fig. 4) GaKCo’s is slower than gkm-SVM. This is be-
cause, in our analysis, we theoretically estimate the size of gkm-SVM’s nodelist.
In practice, we see that the actual nodelist size is smaller than our estimated
for some cases. Among those cases for some gkm-SVM is faster than GaKCo.
However, when with a larger value of M(≥ 4) or a larger dictionary (Σ > 5), the
nodelist size in practice matches our theoretical estimation; therefore, GaKCo
always has lower kernel calculation time complexity than gkm-SVM for these
cases.

GaKCo is independent of dictionary size (Σ): GaKCo’s time complexity
analysis (Section 2) shows that it is independent of the ΣM term, which con-
trols the size of gkm-SVM’s nodelist. In Fig. 5 (a), we plot the average kernel
calculation times for the best performing (g, k) parameters for DNA (Σ = 5),
protein (Σ = 20), and text (Σ = 36) datasets respectively. The results validate
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our analysis. We find that gkm-SVM takes similar time as GaKCo to calculate
the kernel for DNA dataset due to the small dictionary size. However, when the
dictionary size increases for protein and text datasets, it slows down consider-
ably. GaKCo, on the other hand, is consistently faster for all three datasets,
despite the increase in dictionary size.

GaKCo algorithm benefits from parallelization: As discussed earlier, the
calculation of Cm (with m ∈ {0, 1, . . . ,M = (g − k)}) is an independent pro-
cedure in GaKCo’s algorithm. This property makes GaKCo naturally paral-
lelizable. We implement the final parallelized version of GaKCo by distributing
calculation of each Cm on its thread. In Fig. 4 we see that the multi-threaded
version of GaKCo performs faster than its single-threaded counterpart. Next, in
Fig. 5(b), we plot the average kernel calculation times across DNA (5), protein
(12) and text (2) datasets for both multi-thread and single thread implementa-
tions. Hence, we demonstrate that the improvement in speed by parallelization
is consistent across all datasets.

GaKCo scales better than gkm-SVM for increasing number of se-
quences (N): We now compare the kernel calculation times of GaKCo versus
gkm-SVM for increasing number of sequences (N). In Fig. 5(c), we plot the ker-
nel calculation times of GaKCo and gkm-SVM for best performing parameters
(g, k) for three binary classification datasets: EP300 (DNA), 1.34 (protein), and
Sentiment (text). We select these three datasets as they provide the best AUC
scores out of all 19 tasks (see supplementary). To show the effect of increasing
N ∈ {100, 250, 500, 750} on kernel calculation times, we fix the length of the
sequences for all three datasets to l = 100. As expected, the time grows for
both the algorithms with the increase in the number of sequences. However, this
growth in time is more drastic for gkm-SVM than for GaKCo across all three
datasets. Therefore, GaKCo is ideal for adaptive training since its kernel calcula-
tion time increases more gradually than gkm-SVM as new sequences are added.
Besides, GaKCo’s time improvement over the baseline is achieved with almost
no added memory cost (see supplementary).

4 Conclusion
In this paper, we presented GaKCo, a fast and naturally parallelizable algo-

rithm for gapped k-mer based string kernel calculation. The advantages of this
work are:
– Fast: GaKCo is a novel combination of two efficient concepts: (1) reduced

gapped k-mer feature space and (2) associative array based counting method,
making it faster than the state-of-the-art gapped k-mer string kernel, while
achieving same accuracy. (Fig. 1).

– GaKCo can scale up to larger values of m and Σ. (Fig. 4 and Fig. 5(a))
– Parallelizable: GaKCo algorithm naturally leads to a parallelizable imple-

mentation (Fig. 4 and Fig. 5 (b))
– We have provided a detailed theoretical analysis comparing the asymp-

totic time complexity of GaKCo with gkm-SVM. This analysis, to the best
of the authors’ knowledge, has not been reported before (Section 2.3).
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