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Abstract. Signature extraction is a key part of forensic log analysis. It
involves recognizing patterns in log lines such that log lines that origi-
nated from the same line of code are grouped together. A log signature
consists of immutable parts and mutable parts. The immutable parts de-
fine the signature, and the mutable parts are typically variable parameter
values. In practice, the number of log lines and signatures can be quite
large, and the task of detecting and aligning immutable parts of the logs
to extract the signatures becomes a significant challenge. We propose a
novel method based on a neural language model that outperforms the
current state-of-the-art on signature extraction. We use an RNN auto-
encoder to create an embedding of the log lines. Log lines embedded in
such a way can be clustered to extract the signatures in an unsupervised
manner.
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1 Introduction

An important step of an information forensic investigation is log analysis. Logs
contain valuable information for reconstructing incidents that have happened
on a computer system. In this context, a log line is a sequence of tokens that
give information about the state of a process that created this log line. The
tokens of each log lines are partially natural language and partially structured
data. Tokens may be words, numbers, variables or punctuation characters such
as brackets, colons or dots.

Log signatures are the print statements that produce the log lines. Log sig-
natures have fixed parts and may have variable parts. Fixed parts consist of
a sequence of tokens of arbitrary length that uniquely identify signatures. The
variable parts may also be of arbitrary length and variable parts in log lines that
originate from the same signature differ.

The goal of a forensic investigator is to uncover a sequence of events from
a forensic log that reveal a security incident. The sequence of events describes
the actions that the users of this computer system took. Traces of these actions



are typically stored in logs. Similar events may have different log lines associated
with them because the variable part reports the state of the system at that time,
which makes finding such events difficult. Knowing the log signatures of a log
enable a forensic investigator to group together log lines that belong to the same
event, even though the log lines differ. Finding such signatures is challenging
because of the unknown number of signatures and the unknown number and
position of fixed parts. Signature extraction is the process of finding a set of log
signatures given a set of log lines.

State-of-the-art approaches identify log signatures based on the position and
frequency of tokens [1,12,23]. These approaches typically assume that frequent
words define the fixed parts of the signature. This assumption holds if the ratio
of log lines per signature in the analyzed log is high. This can be the case for
many application logs where the tokens of fixed signature parts are repeated with
a high frequency. However, in information forensics, logs commonly have many
signatures but few log lines per signature. In this case, the number of occurrence
of tokens of variable parts may be higher than fixed tokens, which can cause a
confusion of which tokens are fixed and which ones are variable. Confusing fixed
tokens with variable ones leads to signatures that match too few log lines, and
mixing variable tokens with fixed ones will result into signatures that will match
too few log lines.

To address the challenge of signature extraction from forensic logs, we pro-
pose to use a method that takes contextual information about the tokens into
account. Our approach is inspired by recent advances in the NLP domain, where
sequence-to-sequence models have been successfully used to capture natural lan-
guage [3,9].
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Fig. 1. We first embed forensic log lines using an RNN auto-encoder. We then cluster
the embedded log lines and assign them to a signature.

Typically, sequence-to-sequence models consist of two recurrent neural net-
works (RNNs), an encoder network and a decoder network. The encoder network
learns to represent an input sequence, and the decoder learns to construct the
output sequence from this representation. We use such a model to learn an en-
coding function that encodes the log line, and a decoding function that learns to



reconstruct the reversed input log line from this representation. Figure 1 depicts
this idea. Based on the findings in the NLP domain, we assume that this embed-
ding function takes into account contextual information, and embeds similar log
lines close to each other in the embedded space. We then cluster the embedded
log lines and use the clusters as signature assignment.

In detail, the main contributions of our paper are:

— We propose a method, LSTM-AE+C, that uses an RNN auto-encoder to
create a log line embedding space. We then cluster the log lines in the em-
bedding space to determine the signature assignment. We detail this method
in Section 2.

— We demonstrate on our own and two public datasets that LSTM-AE+C
outperforms two state-of-the-art approaches for signature extraction. We
detail the experiment setup in Section 3 and discuss the results after that.

2 Method

Our method LSTM-AE+C for signature extraction of forensic logs can be divided
into two steps. First, we train a sequence-to-sequence auto-encoder network to
learn an embedded space for log lines. Sequence-to-sequence neural networks for
natural language translation have been introduced by Sutskever et al. [19] and
widely applied since then. We use a similar model, however, instead of using it
in a sequence-to-sequence manner, we use it as auto-encoder that reconstructs
the input sequence. Secondly, we cluster the embedded log lines to extract the
signatures.

We depict a schematic overview of our model in Figure 2. To learn an em-
bedding we train the LSTM auto-encoder to reconstruct each input log line. To
do that, the encoder part of the auto-encoder needs to encode the log line into a
fixed size vector that is fed into the decoder. The fixed size of the vector limits
the capacity of the auto-encoder and provides for a regularization that restricts
the auto-encoder from learning an identity function. We use that representation
as embedding for the log lines. In the remaining section we will first detail the
components of our model and their relationships to each other, then detail the
learning objective and finally describe how we extract signatures.

2.1 Model

The input to our model is log lines. We treat log lines as a sequence of tokens
of length n, where a token can be a word, variable part or delimiter. The set of
unique tokens is our input vocabulary, where each token in the vocabulary gets
a unique id.

Since the number of such tokens in a log can be potentially very large, we
learn a dense representation for the tokens of our log lines. To get these dense
representations, we use a token embedding matrix E("*%) where v is the unique
number of tokens that we have in our token vocabulary and u is the number
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Fig. 2. We use a sequence-to-sequence LSTM auto-encoder to learn embeddings for
our log lines.

of hidden units of the encoder network. The index of each row of E is also the
position of v in the vocabulary. We denote an in ¥ embedded token as w.

Next, want to learn the log line embedding. To do so, we learn an encoder
function ENC' using an LSTM (7], which is a variant of a recurrent neural net-
work. We chose an LSTM for both the encoder and decoder, because it addresses
the vanishing gradient problem. h, (t) is the hidden encoder state at time step
t, and yét) is the encoder output at time step t. wét) is the embedded input word
for time step t. We use the encoding state and and input word at each time
step to calculate the next state and the next output. We discard all output s of
the encoder. We use the final hidden state 2™ to embed our log lines. h{™ also
serves as initial hidden state for our decoder network.

(ygt)a hét+1) = ENC(’LUS:), hgt))

Our decoder function DEC is trained to learn to reconstruct the reverse
sequence S’ given the last hidden state hén) of our encoding network. The struc-
ture of the network is identical to the encoder, except we feed the network the
reverse sequence of embedded tokens as input.

W, RS = DECWS, n)

From the decoder outputs yy) we predict the reverse sequence of tokens S’.
Calculating a softmax function for a large token vocabulary is computationally
very expensive because the softmax function is calculated as the sum over all
potential classes. Therefore, we predict the output tokens of our decoder sequence
using sampled softmax [8]. Sampled softmax is a candidate training method that
approximates the desired softmax function by solving a task that does not require
predicting the correct token from all token. Instead, the task sampled softmax
solves is to identify the correct token from a randomly drawn sample of tokens.



2.2 Objective

To embed our log lines in an embedded space, the model needs to maximize the
probability of predicting a reversed sequence of tokens S’ given a sequence of
tokens S. In other words, we want to train the encoding network to learn an
embedding that contains enough information for the decoder to reconstruct it.
However, as an effect of the regularization, we expect the model to use the struc-
ture to use the structure of the log lines to create a more efficient representation,
that in turn allows us to extract the signatures.

x Q.
0 = argmax Z logp(S'|S;0)
(8,57

# are the parameters of our model, S represents a log line, and S’ represents
a reversed log line.

S is a sequence of tokens of arbitrary length. To model the joint probability
over S{,...,S;_; given S and 6, it is common to use the chain rule for proba-
bilities.

logp(S'[S,0) = log p(S|S.0,S5,...,5 )
t=0

When training the network, S and S’ are the inputs and the targets of one
training example. We calculate the sum of equation 2.2 per batch using RM-
SProp [22]. We detail the hyper parameters of the training process in section
3.3.

2.3 Extracting signatures

After the training of our auto-encoder model is complete, we use encoding net-
work to generate the embedded vector. We expect that due to the regularization
structurally similar log lines will be embedded close to each other, which enables
us to use a clustering algorithm to group log lines which belong to the same
signature.

Since forensic logs may be very large, we cluster the embedded log lines using
the BIRCH algorithm [27]. BIRCH is an iterative algorithm that dynamically
builds a height-balanced cluster feature tree. The algorithm has an almost lin-
ear runtime complexity on the number of training examples, and it does not
require the whole dataset to be stored in memory. These two properties make
the algorithm well suited for applications on large datasets.

3 Experiments

We compare our method to LogCluster [23] and IPLoM [11]. Many algorithms
have been designed to be applied to a special type of application log, where the
number of signatures is known up front. However, in an information forensic



context the forensic logs that are being analyzed stem from an unknown system,
which means that the number of signatures is not known up front. Therefore it is
important that IPLoM and LogCluster do not require a fixed amount of clusters
as a hyper parameter. Furthermore, in a study by He et al [6], IPLoM and SLCT
were amongst the best-performing signature extraction algorithms. LogCluster is
the improved version of SLTC that addresses multiple shortcomings of SLCT. We
thus assume the LogCluster would have outperformed SLCT in He’s evaluation.
For IPLoM, we use the implementation provided by [6]. For LogCluster we use
the implementation provided by the author online®. We implemented our own
method LSTM-AE+C in Tensorflow version 1.0.1. Our experiments are available
on GitHub?.

3.1 Evaluation metrics

To assess our approach, we treat the log signature extraction problem as log
clustering problem because log clustering and log signature extraction are related
problems [20]. The key difference between clustering and signature extraction is,
that the goal of a clustering approach is the find the best clusters according to
some metric, whereas the goal of signature extraction is to find the right set of
signatures. This set of signatures does not have to be the best set of clusters.

We evaluate the quality of the retrieved clusters of all our evaluated ap-
proaches with two metrics: the V-Measure [15] and the adjusted mutual in-
formation [24]. The V-Measure is the harmonic mean between the homogeneity
and the completeness of clusters. It is based on the conditional entropy of the
clusters. The adjusted mutual information describes the mutual information of
different cluster labels, adjusted for chance. It is normalized to the size of the
clusters. Both approaches are independent of permutations on the true and pre-
dicted labels. The values of the V-Measure and the adjusted mutual information
can range from 0.0 to 1.0. In both cases, 1.0 means perfect clusters and 0.0 means
random label assignment.

Additionally, we assess the cluster quality for clusters retrieved with LSTM-
AE+C using the Silhouette score. The Silhouette score measures the tightness
and separation of clusters and only depends on the partition of the data [16]. Tt
ranges between -1.0 and 1.0, where a negative score means many wrong cluster
assignments and 1.0 means perfect clustering.

We validate the stability of our approaches using 10-fold, randomly sub-
sampled 10000 log lines [10]. In Section 3.4, we report the average scores for our
metrics and their standard deviation.

3.2 Datasets

We use three logs to evaluate and compare our method: a forensic log that we
extracted from a virtual machine hard drive and the system logs of two high-

3 https://ristov.github.io/logcluster/
* https://github.com /stefanthaler /2017-ecml-forensic-unsupervised



performance cluster computers, BlueGene/L(BGL) and Spirit [13]. An overview
over the log statistics is presented in Table 1.

We created our forensic log by extracting it from a Ubuntu 16.04 system
image disk using the open source log2timeline tool®>. We manually created the
signatures for this dataset by looking at the Ubuntu source code. The difference
between a forensic log and a system log is that a forensic log contains informa-
tion from multiple log files on the examined system, whereas a system log only
contains the logs that were reported by the system daemon. The system log is
part of the forensic log, but it also contains other logs, which typically leads to
more complexity in such log files.

BlueGene/L(BGL) was a high-performance cluster that was installed in the
Lawrence Livermore National Labs. The publicly available system log was recorded
during March 6th and April 1st in 2006. It consists of 4.747.963 log lines in total.
In our experiments, we use a stratified sample which has 474.796 log lines. We
manually extracted the signatures for this log file.

Spirit was a high-performance cluster that was installed in the Sandia Na-
tional Labs. The publicly available system log was recorded during January 1st
and the 11th of July in 2006. It consists of 272.298.969 log lines in total. In
our experiments, we use a stratified sample which has 716.577 lines. We also
extracted the signatures for this log by hand.

The BlueGene/L and the Spirit logs are publicly available and can be down-
loaded from the Usenix webpage®. We publish our dataset on GitHub”.

Table 1. The log file statistics are as follows:

Log Name Lines |Signatures|Unique tokens
Forensic 11.023 852 4.114
BlueGene/L [474.796 355 114.495
Spirit2 716.577 691 59.972

For all three log files, we removed fixed position data such as timestamps or
dates at the beginning of each log message. In the case of our forensic log we
completely removed these columns. In the case of the other two logs, we replaced
the fixed elements with special token, such as TIME_STAMP. We added this
preprocessing because it reduces the sequence complexity, but it does not reduce
the quality of the extracted signatures.

® https://github.com/log2timeline/
5 https://www.usenix.org/cfdr-data
" https://github.com /stefanthaler/2017-ecml-forensic-unsupervised



3.3 Hyper parameters and training details

IPLoM supports the following parameters: File support threshold (FST), which
controls the number of clusters found; partition support threshold (PST), which
limits the backtracking of the algorithm; upper bound (UB) and lower bound(LB)
which control when to split a cluster and cluster goodness threshold (CGT) [11].
We evaluate IPLoM by performing a grid search on the following parameter
ranges: FST between 1 and 20 in 1 steps, PST of 0.05, UB between 0.5 and 0.9
in 0.1 steps, LB, between 0.1-0.5 in 0.1 steps and CGT between 0.3 and 0.6 in
0.1 steps. We chose the parameters according to the guidelines of the original
paper.

LogCluster supports two main parameters: support threshold (ST), which
controls the minimum amount of patterns and the word frequency (WF), which
sets the frequency of words within a log line. We evaluate LogCluster by per-
forming grid search using the following parameter ranges: ST between 1 and
3000 in and WF of 0.3, 0.6 and 0.9.

We generate each input token sequence by splitting a log line at each special
character. Furthermore, we add a special token at the beginning and the end
of the sequence that marks the beginning and the end of a sequence. Within a
batch, sequences are zero-padded to the longest sequence in this batch, and zero
inputs are ignored during training.

All embeddings and LSTM cells had 256 units. Both encoder and decoder
network had a 1-layer LSTM. We trained all our LSTM auto-encoders for ten
epochs using RMSProp [22]. We used a learning rate of 0.02 and decayed the
learning rate by 0.95 after every epoch. Each training batch had 200 examples
and the maximum length number of steps to unroll the LSTM auto-encoder was
200. We used 500 samples to calculate the sampled softmax loss. We used dropout
on the decoder network outputs [17] to prevent overfitting and to regularize our
network to learn independent representations. Finally, we clip the gradients of
our LSTM encoder and LSTM decoder at 0.5 to avoid exploding gradients [14].

The hyper parameters and the architecture of our model were empirically
determined. We tried LSTMs with attention mechanism [3], batch normalization,
multiple layers of LSTMSs, and more units. However, these measures had little
effect on the quality of the clusters; therefore we chose the simplest possible
architecture. We used the same architecture and hyper parameters for all our
experiments.

The second step in our method is to cluster the embedded log lines to find
signatures. We cluster the embedded log lines using the BIRCH cluster algo-
rithm [27]. We performed the clustering using grid search on distance thresholds
between 1 and 50 in 0.5 steps, and a branching factor of either 15, 30 or 50.

3.4 Results

We report the results of our experiments in Table 2. Each value reports the
best performing hyper parameter settings. Each score is the average of 10-fold
random sub-sampling followed by the standard deviation of this average. We



do not report on the Silhouette score for LogCluster and IPLoM because both
algorithms do not provide a means to calculate the distance between different
log lines.

Table 2. Log clustering evaluation, best averages and standard deviation.

Log file Approach V-Measure Adj. Mut. Inf. Silhouette
LogCluster [23] 0.904 £0.000 0.581 £0.000  N/A
Forensic IPLoM [11] 0.825 £0.001 0.609 +0.001 N/A
LSTM-AE+C (Ours) 0.935 £0.002 0.864 +0.004 0.705 +0.001
LogCluster [23] 0.592 £0.004 0.225 +0.005 N/A
BlueGene/L  IPLoM [11] 0.828 £0.003 0.760 +0.005 N/A
LSTM-AE+C (ours) 0.948 £0.005 0.900 +0.001 0.827 +0.002
LogCluster [23] 0.829 £0.002 0.677 +0.004 N/A
Spirit IPLoM [11] 0.920 £0.004 0.895 +0.003 N/A

LSTM-AE+C (ours) 0.930 £0.010 0.902 £+0.008 0.815 £0.004

3.5 Discussion of results

As can be seen from Table 2, our approach significantly outperforms the two
word-frequency based baseline approaches on the three datasets, both regarding
V-Measure and Adjusted Mutual Information. The standard deviation is below
0.005 in all reported experiments, which indicates that clustering is consistently
stable over the datasets.

For all three log files we obtain a Silhouette score of greater than 0.70, which
indicates that the cluster algorithm has found a strong structure in the embed-
ded log lines. The weakest structure has been found in the Forensic log. We
hypothesize that the high signature-to-log-line ratio in this log causes the lower
Silhouette score.

Finding the optimal number of clusters for a clustering or signature extraction
approach is a well-known problem. We do not address the topic of finding the
optimal number of signatures in this paper, but it is a fundamental research
topic in many methods for finding the optimal number of clusters have been
proposed, for example [18, 21].

4 Related Work

Log signature extraction has been studied to achieve a variety of goals such
as anomaly and fault detection in logs [5], pattern detection [1,12,23], profile
building [23], or compression of logs [12, 20].

Most of the approaches use word-position or word-frequency based heuristics
to extract signatures from logs. Tang et al. propose to use frequent word-bigrams



to obtain signatures [20]. Fu et al. propose to use a weighted word-edit distance
function to extract signatures [5]. Makanju et al. use the log line length as well as
word frequencies to extract signatures [11]. Vaarandi et al. use word frequencies
and word correlation scores to determine the fixed parts of log lines and thereby
the signatures [23]. Xu et al. propose a method that is not base on statistical
features of the log lines. Instead, they propose to create to extract the signatures
from the source code [26].

Recently, RNN sequence-to-sequence models have been successfully applied
for neural language modeling and statistical machine translation tasks [2, 3, 19].
Apart from that, Johnson et al. demonstrated on a large scale that sequence-
to-sequence models can be used to allow translation between languages even if
explicit training data from source to target language is not available [9].

Auto-encoders have been successfully applied to clustering tasks, such as
clustering text and images [25]. Variational recurrent auto-encoders have been
used to cluster music snippets [4].

5 Conclusion and future work

We have presented the LSTM-AE+C a method for clustering forensic logs ac-
cording to their log signatures. Knowing that log lines belong to the same sig-
nature enables a forensic investigator to run more sophisticated analysis on a
forensic log, for example, to reconstruct security incidents. Our method uses
two components: an LSTM encoder and a hierarchical clustering algorithm. The
LSTM encoder is trained as part of an auto-encoder on a log in an unsupervised
fashion, and then the clustering algorithm assigns embedded log lines to their
signature.

Experiments on three different datasets show that this method outperforms
two state-of-the-art algorithms on clustering log lines based on their signatures
both in V-Measure and adjusted mutual information. Moreover, we find that the
Silhouette score of all found clusters by our method are greater than 0.70, which
indicates strongly structured clusters.

One potential way of improving this method is to add a regularization term
that aids the auto-encoder in embedding the clustering. Adding a regularization
term could be a possible way to inject domain knowledge in the learning process
and therefore increase the quality of the learned representation. For example, one
could penalize the reconstruction loss of likely variable parts such as memory
addresses, numbers or dates less.

Furthermore, we intend to investigate whether the attention mechanism of
attentive LSTMs could be used to identify mutable and fixed parts of log lines.
Finally, another future direction to our approach is to extract signatures that
are human-interpretable. One potential way of addressing this is by using the
decoder network to sample log lines from the embedding space.
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