
Fast and Accurate Density Estimation with
Extremely Randomized Cutset Networks

Nicola Di MauroY1, Antonio VergariY1,
Teresa M.A. Basile2,3, and Floriana Esposito1

1 Department of Computer Science, University of Bari “Aldo Moro”, Bari, Italy
2 Department of Physics, University of Bari “Aldo Moro”, Bari, Italy

3 National Institute for Nuclear Physics (INFN), Bari Division, Bari, Italy

Abstract. Cutset Networks (CNets) are density estimators leveraging
context-specific independencies recently introduced to provide exact in-
ference in polynomial time. Learning a CNet is done by firstly building
a weighted probabilistic OR tree and then estimating tractable distri-
butions as its leaves. Specifically, selecting an optimal OR split node
requires cubic time in the number of the data features, and even approx-
imate heuristics still scale in quadratic time. We introduce Extremely
Randomized Cutset Networks (XCNets), CNets whose OR tree is learned
by performing random conditioning. This simple yet surprisingly effective
approach reduces the complexity of OR node selection to constant time.
While the likelihood of an XCNet is slightly worse than an optimally
learned CNet, ensembles of XCNets outperform state-of-the-art density
estimators on a series of standard benchmark datasets, yet employing
only a fraction of the time needed to learn the competitors.

Keywords: Tractable Probabilistic Models; Cutset Networks.

1 Introduction

Density estimation is the unsupervised task of learning an estimator for the joint
probability distribution over a set of random variables (RVs) that generated the
observed data. Once such an estimator is learned, it is used to do inference, i.e.,
computing the probability of the queries about certain states of the RVs. Since
a perfect estimate of the real distribution would allow to solve many learning
tasks exactly when reframed as different kinds of inference4, density estimation
classifies as one of the most general task in machine learning [13].

The main challenge in density estimation is balancing the representation ex-
pressiveness of the learned model against the cost of learning it and performing
inference on it. Probabilistic Graphical Models (PGMs), like Bayesian Networks
(BNs) and Markov Networks (MNs), are able to model highly complex probabil-
ity distributions. However, exact inference with them is generally intractable, i.e.,

Y Both authors contributed equally.
4 E.g., classification can be framed as Most Probable Explanation (MPE) inference.

not solvable in polynomial time, and even some approximate inference routines
are intractable in practice [23]. With the aim of performing exact and polynomial
inference, a series of tractable probabilistic models (TPMs) have been recently
proposed: either by restricting the expressiveness of PGMs by bounding their
treewidth [24], e.g., tree distributions and their mixtures [18], or by exploiting
local structures in a distribution [4]. It is worth noting that inference tractability
is not a global property, but it is associated to classes of queries. For instance,
computing exact marginals on a TPM may be feasible, while MPE may be
not [1]. TPMs like Arithmetic Circuits [6], Sum-Product Networks (SPNs) [19],
and Cutset Networks (CNets) [21] promise a good compromise between expres-
sive power and tractable inference by compiling high treewidth distributions in
compact and efficient data structures. Even if learning such TPMs may be done
in polynomial time, thanks to several recent algorithmic schemes, making these
algorithms scale to high dimensional data is still an issue. We focus on CNets
since they i) exactly and tractably compute several inference query types like
marginals, conditionals and MPE inference [7], and ii) promise faster learning
times, when compared to other TPMs.

CNets have been introduced in [21] as weighted probabilistic model trees
having tree-structured models as the leaves of an OR tree. They exploit context-
specific independencies (CSIs) [2] by embedding Pearl’s conditioning algorithm.
While the learning algorithm originally proposed in [21] provides a heuristic
approach, it still requires quadratic time w.r.t. the number RVs to select each
tree inner node to condition on. A theoretically principled and more accurate
version, presented in [9], overcomes many of the initial version issues, like the
tendency to overfit. However, in order to do so, it increases the complexity of
performing a single split to cubic time. We tackle the problem of scaling CNet
learning to high dimensional data while preserving inference accuracy.

Here we introduce Extremely Randomized CNets (XCNets), as CNets that
can be learned in a simple, fast and yet effective approach by performing random
conditioning to grow the OR tree. In such a way, selecting a node to split on
reduces to constant time w.r.t. the number of features. As we will see, while
the likelihood of a single XCNet is not greater than an optimally learned CNet,
ensembles of XCNets outperform state-of- the-art density estimators on a series
of standard benchmark datasets, yet employing a fraction of the time needed to
learn the competitors. To further reduce the learning complexity, we investigate
the exploitation of a naive factorization as leaf distribution in XCNets. As a
result, we can build an extremely fast mixture of density estimators that is more
accurate than several CNets and comparable to a BN exploiting CSI [3].

2 Background

Notation. Let RVs be denoted by upper-case letters, e.g., X, and their values
as the corresponding lower-case letters, e.g., x ∼ X. We denote sets of RVs as
X, and their combined values as x. For a set of RVs X we denote with X\i the
set X deprived of Xi, and with X|Y the restriction of X to Y ⊆ X (the same

applies to assignments x). W.l.o.g., we assume RVs we deal with in the following
to be binary valued.

Density Estimation. Let D = {ξj}mj=1 be a set of m n-dimensional samples
drawn i.i.d. according to an unknown joint probability distribution p(X), with
X = {Xi}ni=1. We refer to ξj [Xi] as the value assumed by the sample ξj in
correspondence of the RV Xi. We are interested in learning a model M from D
such that its estimate of the underlying distribution, denoted as pM(X), is as
close as possible to the original one [13]. Generally, measuring this closeness is
done via the log-likelihood function, or one of its variants, defined as: `D(M) =∑m
j=1 log pM(ξj). In the next sub-sections we review the approaches to density

estimation as the building blocks of XCNets we propose in Section 4.

2.1 Product of Bernoulli distributions

The simplest representation assumption for p(X) over RVs X, allowing tractable
inference, involves considering all RVs in X to be independent: p(x) =

∏n
i=1 p(xi).

For binary RVs, this naive factorization leads to the product of Bernoulli distri-
butions (PoBs) model, where building pM equals to estimate the pM(x0i) = θ0i .

Proposition 1 (LearnPoB time complexity). Learning a PoB from D over
RVs X has time complexity O(nm), where m = |D| and n = |X|.
Proof. For each Bernoulli RV Xi ∈ X, estimating θi requires a single pass over
{ξj [Xi]}mj=1, hence taking O(m). Consequently, for all RVs in X, it takes O(mn).

Similarly to what Naive Bayes provides for classification, PoBs deliver a cheap
and very fast baseline for tractable density estimation, even if the total indepen-
dence assumption clearly does not hold on real data. Moreover, mixtures of
PoBs, sometimes simply referred to mixtures of Bernoulli distributions (MoBs),
have proved as an effective way to increase the representation expressiveness of
PoBs [16]. However, while inference on MoBs is still tractable, learning them
in a principled way requires running the EM algorithm for k iterations and r
restarts, thus increasing the complexity up to O(rkmn) [16].

2.2 Probabilistic Tree Models

A directed tree-structured model [18] over X is a BN in which each node Xi ∈
X has at most one parent, PaXi

. It encodes a distribution that factorizes as:
p(x) =

∏n
i=1 p(xi|Paxi

), where Paxi
denotes the projection of the assignment x

on the parent of Xi. By modeling such dependencies, tree-structured models can
be more expressive than PoBs, yet still performing exact complete and marginal
inference in O(n) [18]. To learn a model M = 〈T , {θi|PaXi

}ni=1〉, now one has
to estimate both a tree structure T and the conditional probabilities θi|PaXi

=
pM(Xi|PaXi

). Growing an optimal model, according to the KL-divergence, can
be done by employing the classical result from Chow and Liu [5]. We will refer to
tree-structured models as Chow-Liu trees, or CLtrees, assuming the Chow-Liu
algorithm (LearnCLTree) has been employed to learn them.

Proposition 2 (LearnCLTree time complexity [5]). Learning a CLtree from
D over RVs X has time complexity O(n2(m+log n)), wherem = |D| and n = |X|.

Proof. For each pair of RVs in X, their mutual information (MI) can be es-
timated from D in O(mn2) steps. Building a maximum spanning tree on the
weighted graph induced by the adjacency matrix MI takes O(n2 log n). Lastly,
both arbitrarily rooting the tree, traversing it, and estimating the conditional
probabilities θi|PaXi

can be done in O(n).

All in all, the complexity of learning a CLTree is quadratic in n. While this is
a huge gain w.r.t. learning a higher order dependency BN, it still poses a practical
issue when LearnCLTree is applied as a routine in larger learning schemes and
on datasets with thousand features. Nevertheless, CLTrees have been employed
as the core components of many tractable probabilistic models ranging from
mixtures of them [18], SPNs [26] and CNets [21,9,8]. We will specifically tackle
the problem of scaling CNet learning in the following sections.

3 Cutset Networks

Cutset Networks are TPMs introduced in [21] as a hybrid of OR trees and
CLTrees as the tree leaves. Here we generalize their definition to comprise generic
TPMs as leaf distributions. A CNet C over a set of RVs X, is a probabilistic
weighted model tree defined via a rooted OR tree G and a set of TPMs {Mi}Li=1,
in which each Mi encodes a distribution pMi

over a subset of X, called scope
and denoted as sc(Mi). The scope of a CNet C, sc(C), is the set of RVs appearing
in it. A CNet may be defined recursively as follows.

Definition 1 (Cutset network). Given binary RVs X, a CNet is: 1) a TPM
M, with sc(M) = X; or 2) a weighted disjunction of two CNets C0 and C1 graph-
ically represented as an OR node conditioned on RV Xi ∈ X, with associated
weights w0

i and w1
i s.t. w0

i + w1
i = 1, where sc(C0) = sc(C1) = X\i.

A CNet over binary RVs is shown in Figure 1: each circled node is an OR tree
node and labeled by a variable Xi. Each edge emanating from it is weighted
by the probability w0

i , resp.w1
i , of conditioning Xi to the value 0, resp. 1. The

distribution encoded by a CNet C can be written as:

p(x) = pl(x|sc(C)\sc(Ml))pMl
(x|sc(Ml)), (1)

where pl(x|sc(C)\sc(Ml)) =
∏
i(w

0
i)

1−xi(w1
i)
xi is a factor obtained by multiplying

all the weights attached to the edges of the path in the OR tree starting from
the root of C and reaching a unique leaf node l; on the other hand, pMl

(x|sc(Ml))
is the distribution encoded by the reached leaf l. pMl

can be interpreted as a
conditional distribution p(x|sc(Ml)|x|sc(C)\sc(Ml)).

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Fig. 1. Example of a CNet over binary RVs. Inner (rounded) nodes on variables Xi

are OR nodes, while leaf (squared) nodes represent CLtrees.

3.1 Learning CNets

Learning both the structure and parameters of a CNet from data equals to
perform searching in the space of all probabilistic weighted model trees. This
would require an exponential time: for a dataset D over RVs X learning a full
binary OR tree with height k has time complexity O(nk2k(n2(m + log n))) =
O(m2knk+2), with m = |D| and n = |X|. In practice, this problem is tackled in
a two-stage greedy fashion by: i) first performing a top-down search in the space
of weighted OR trees, and then ii) learning TPMs as leaf distributions according
to a conditioned subset of the data. The first structure learning algorithm for
CNets is the one introduced in [21], leveraging a heuristic approach to induce
the OR tree and demanding pruning to combat overfitting. A following approach
has been introduced in [9], growing the OR tree by a principled Bayesian search
maximizing the data likelihood. In the following, we introduce a general scheme
to learn CNets, showing how, by properly determining a splitting criterion to
grow the OR tree, one can recover both the algorithms from [21] and [9]. This, in
turn, highlights how the splitting criterion time complexity determines that of
learning the whole OR tree, and hence the whole CNet. In Section 4, we propose
a variation of the splitting procedure drastically reducing its cost.

General learning scheme Algorithm 1 reports a general approach for CNets
structure learning. In particular, the procedure tries to select a variable Xi on the
input data slice D (line 4). If a such a variable exists (line 5), it then recursively
(line 8) tries to decompose the two new slices D0 and D1 over X\i. When the
slice D has few instances, or it is defined on few variables, then a leaf distribution
is learned (line 10). Both, the algorithms reported in [21,9] use CLtrees as leaf
distribution, i.e., the learnDistribution procedure on line 10 corresponds to call
the LearnCLTree algorithm.

By deriving the time complexity of both growing the OR tree and learning
the leaf distributions, one can derive the whole time complexity of LearnCNet.
In turn, the time complexity of growing the OR tree clearly depends by the

Algorithm 1 LearnCNet(D, X, α, δ, σ)

1: Input: a dataset D over RVs X; α: Laplace smoothing factor; δ min number of samples to split;
σ min number of features to split

2: Output: a CNet C encoding pC(X) learned from D
3: if |D| > δ and |X| > σ then
4: Xi, success← select(D,X, α)
5: if success then
6: D0 ← {ξ ∈ D : ξ[Xi] = 0}, D1 ← {ξ ∈ D : ξ[Xi] = 1}
7: w0 ← |D0|/|D|, w1 ← |D1|/|D|
8: C ← w0 · LearnCNet(D0,X\i, α, δ, σ) + w1 · LearnCNet(D1,X\i, α, δ, σ)

9: else
10: C ← learnDistribution(D,X, α)
11: return C

cost of selecting the RV to split on at each step. If we assume the variations of
LearnCNet have grown the same sized OR trees, the time complexity of each im-
plementation of select determines the whole OR tree growing phase complexity.
Concerning learning leaf distributions, its complexity is determined by the cost
of learning a single distribution, that in case of CLTrees is O(n2(m + log(n)))
(see Proposition 2). As a consequence, assuming to learn L leaves for a tree,
then it would take O(Ln2(m + log(n))) for all variations to learn such leaves.
In the following Sections we revise and analyze the two variations of LearnCNet
reported in [21,9].

Proposition 3. Growing a full binary OR tree with LearnCNet on D over RVs
X has time complexity O(k(S + m)), where m = |D|, n = |X|, k is the height
of the OR tree, and S = T (m,n), assumed to grow linearly w.r.t. m holding n
constant, is the time required to compute the OR split node selection procedure
on D (select function in Algorithm 1, line 4).

Proof. A set Dht ⊂ D of samples falls in each internal node t with height h,

such that ∀i 6= j : Dhi ∩ Dhj = ∅, and ∪2hi=1Dhi = D. Furthermore, for each

internal node t with height h, T (|Dht |, n−h) has been the time required to compute
the OR split selection, and |Dht | is the time required to split the samples Dht .
Assuming that T (m,n) grows linearly w.r.t. m holding n constant, then for each

height h we have a time complexity equal to O(
∑2h

i=1(T (|Dhi |, n− h) + |Dhi |)) =
O(T (|D|, n − h) + m). Since the OR tree has height k, then the overall time is

O(
∑k−1
i=0 (T (|D|, n− i) +m)) = O(k(T (|D|, n) +m)).

Information gain splitting heuristic The algorithm to learn CNet structures
proposed in [21], that here we will call entCNet, performs a greedy top-down
search in the OR-trees space that can be reframed in Algorithm 1. It implements
the select function as a procedure to determine the RV Xi that maximizes a
generative reformulation of the information gain from decision tree theory. Since
computing the joint entropy over RVs X\i would be unfeasible to calculate, it
heuristically approximates it by computing the average over marginal entropies.

To cope with the systematic overfitting showed by CNets learned by entCNet,
always in [21], a post-pruning method on a validation set is introduced. Leverag-

ing this decision tree technique, on a fully grown CNet, by advancing bottom-up,
leaves are pruned and inner nodes without children replaced with a CLtree (that
needs to be learned from data), if the network validation data likelihood after
this operation is higher than that scored by the not pruned network.

Proposition 4 (select time complexity in entCNet [21]). The time com-
plexity for selecting the best splitting node on a slice D over RVs X in entCNet
is O(mn2), where m = |D| and n = |X|.

Corollary 1. Growing a full binary OR tree for entCNet when learning a CNet
on D over RVs X has time complexity O(kmn2), where m = |D|, n = |X|, and
k is the height of the OR tree.

Proof. From Propositions 3 and 4, the overall time complexity to grow a full
binary OR tree is O(k(mn2 +m)) = O(km(n2 + 1)).

dCSN: likelihood guided splitting In [9], the authors proposed the dCSN al-
gorithm that exploits a different approach from that in [21], by avoiding decision
tree heuristics while choosing the best variable directly maximizing the data log-
likelihood. As already reported in [9], the log-likelihood function of a CNet may
be decomposed as follows. Given a CNet C learned on D over X, its log-likelihood
`D(C) can be computed as follows: `D(C) =

∑
ξ∈D

∑
i=1,...,n log p(ξ[Xi]|ξ[PaXi]),

when C corresponds to a CLtree. While, in the case of a OR tree rooted on the
variable Xi, the log-likelihood is:

`D(C) =
∑
j=0,1

mj logwji + `Dj
(Cj), (2)

being Cj the CNet involved in the OR, Dj = {ξ ∈ D : ξ[Xi] = j}, mj = |Dj |,
and `Dj

(Cj) is the log-likelihood of the sub-CNet Cj on the slice Dj , for j = 0, 1.
By exploiting this recursive nature of CNets, a CNet is grown top-down, al-

lowing further expansion, i.e., the substitution of a CLtree with an OR node, only
if it improves the structure log-likelihood, since it is clear to see that maximizing
the second term in Equation 2, results in maximizing the global score.

As reported in [9], one starts with a single CLtree, learned from D over X,
and then it checks whether there is a decomposition, i.e., an OR node on the best
variable Xi applied on two CLtrees, providing a better log-likelihood than that
scored by the initial tree. If such a decomposition exists, than the decomposition
process is recursively applied to the sub-slices D0 and D1 over X\i, testing each
leaf for a possible substitution.

Proposition 5 (select time complexity in dCSN). The time complexity for
selecting the best splitting node on a slice D over RVs X in dcsn is O(n3(m +
log n)), where m = |D| and n = |X|.
Proof. For each variable Xi ∈ X, two CLTrees have been computed on D0 and
D1 leading to a splitting complexity O(n2(m+ log n)). Since n splits have to be
checked, the overall complexity to select the best split is O(n3(m+ log n)).

Corollary 2. Growing a full binary OR tree on D over RVs X with dCSN has
time complexity O(kmn3), where m = |D|, n = |X|, and k is the height of the
OR tree.

Proof. From Propositions 3 and 5, the overall time complexity to grow a full
binary OR tree is O(k(mn3 +m)) = O(km(n3 + 1))).

3.2 Learning ensembles of CNets

To mitigate issues like the scarce accuracy of a single model and their tendency
to overfit, since [21] CNets have been employed as the components of a mixture
of the form: p(X) =

∑c
i=1 λiCi(X), being λi ≥ 0 :

∑c
i=1 λi = 1 the mixture

coefficients. The first approach to learn such a mixture employs EM to alterna-
tively learn both the weights and the mixture components. With this approach,
the time complexity of learning CNets grows at least of a factor of ct, where t
is the number of iterations of EM. All the classic issues about convergence and
instability of EM make this approach less practical then the following ones. A
more efficient method to learn Mixtures of CNets, presented in [9], adopts bag-
ging as a cheap and yet more effective way to only increase time complexity by
a factor c. For bagged CNets, mixture coefficients are set equally probable and
the mixture components can be learned independently on different bootstrapped
data samples. An approach adding random subspace projection to bagged CNets
learned with dCSN has been introduced in [8]. While its worst case complexity
is the same as for bagging, the cost of growing the OR tree reduced by ran-
dom sub-spacing is effective in practice. Mixtures of CNets have been learned by
exploiting three boosting approaches proposed in [20], having time complexity
equals to that for bagging or even worst.

4 Extremely Randomized CNets

XCNets (Extremely Randomized CNets) are CNets that are built by LearnCNet
where the OR split node procedure (the select function in Algorithm 1, line 4) is
simplified in the most straightforward way: selecting a RV uniformly at random.
We denote this algorithmic variant of LearnCNet as XCNet. As a consequence,
the cost of the new select function in XCNet does not directly depend anymore
on the number of features n and can be considered to be constant.

Proposition 6 (select time complexity in XCNet). The time complexity for
selecting the splitting node on a slice D over X in XCNet is O(1).

Proof. The time required to randomly choose a number in (1, . . . , |X|).

Corollary 3. Growing a full binary OR tree on D over X with XCNet has time
complexity O(km), where k is the height of the OR tree.

Proof. From Propositions 3 and 6, the overall time complexity to grow a full
binary OR tree is O(k(1 +m)).

While we introduce this variation with the obvious aim of speeding up a CNet
OR tree learning process, we argue that XCNet should still provide accurate
density estimators. We support this conjecture with the following motivations.

A CNet can be seen as a sort-of mixture of experts in which the gating func-
tion role is demanded to the OR tree, the leaf distributions act as the local
experts, and the gating function operates by selecting only one expert per in-
put sample. Let g : X → {Mi}Li=1 be a gating function that associates each
configuration ξ ∼ X to only one leaf model, Mξ. For a CNet C, g can be
built by associating to each ξ a path p in the OR tree structure G of C. A
path p = p(1)p(2) · · · p(k) of length k is grown as a sequence of observed values
v1v2 · · · vk in the same fashion as one performs inference according to Equation 1:
starting from the root of C, for each OR node i traversed, corresponding to RV
Xp(i), the branching corresponding to the value vi = ξ[Xp(i)] is followed. At the
end of the path p, a leaf model Mp = Mξ is reached. Alternatively, one can
express g as a function of all possible combinations one can build over a set of

observed RVs X: g(ξ) =
∑
p∈G

∏|p|
i=1 1{ξ[Xp(i)] = vi}Mp. Now, from this con-

struction of g, one can derive that permuting the order of appearance of the RVs
values vi does not change the value of g. In the same way, from the factorization
in Equation 1, it follows that neither the joint probability mass associated to the
configuration ξ changes after such a permutation. This follows from the fact that
the portion of the likelihood assigned to ξ that depends on the path p can be
exactly recovered by choosing another sequence of conditionings, as different ap-
plications of the chain rule of probability still model the same joint distribution.
This permutation invariance suggests that given a way to associate a sample
to a leaf distribution, the way in which conditionings are performed can be ir-
relevant. Clearly, while this is true for an already learned CNet, for algorithms
inducing the OR tree in a top-down fashion, the order in which conditionings are
performed during learning obviously matter. Nevertheless, in practice, it might
matter less than expected. From another perspective, building an OR tree, and
hence g, is likely to perform a clustering of all possible sample configurations.
For all LearnCNet variants, this clustering performs a trivial aggregation of sam-
ples based on their equal observed values for the conditioned RVs. This is one
of the issues why algorithms like entCNet are very prone to overfit. For XCNets,
however, the randomization introduced in this clustering phase behaves as a
regularizer and helps to overcome the aforementioned issue. All in all, we argue
that it is more demanding to estimate good distributions at the leaves than an
overoptimized gating function.

Moreover, an additional motivation to the introduction of XCNets comes
from ensemble theory. From the interpretation of CNets as mixture of experts,
the leaf distribution of a CNet acts as an ensemble of density estimators. Em-
ploying a randomized selection criterion increases the diversification of the leaf
distributions, and, on the other hand, a strong diversification helps ensembles to
better generalize [12]. To better understand this aspect consider a run of entCNet
in which the select function has chosen a RV Xi instead of RV Xj to condition on
as the first reduces the model entropy more than the second. In both branches x0i

and x1i of such a conditioning, it is likely that RV Xj would still be considered as
one of the top ranked RVs to be split on in the following iterations. By repeating
this argument, it might be likely that the leaf distributions appearing in the sub
trees generated by conditioning on x0i and x1i would have very similar scopes.

When constructing ensembles of CNets we expect this diversification effect
introduced by randomization to be even more prominent and effective. In ensem-
ble methods like bagging one employs bootstrapping as a source of randomness
to diversify the ensemble components [12]. This is also the case for mixtures
of CNets built by bagging (see Section 3.2). Differently from bagged CNets, en-
semble of XCNets do not need an additional way to produce strongly different
components. Therefore, when learning mixtures of XCNets, we aggregate the
components by learning each component independently on the full dataset.

Lastly, we review Extremely Randomized Tree, or simply ExtraTrees [10]
as they are similar in spirit and by name to XCNets. An ExtraTree is a de-
cision tree that is learned by considering only a random subset of features for
the introduction of an OR node (like for random forests [12]) and by randomly
selecting a threshold for the actual split. Among those randomly generated hy-
perplanes, the best according to an optimization criterion is chosen. XCNets
differ from ExtraTrees from several perspectives. First, they are density estima-
tors and therefore each OR node in them has to split over all the possible values
the chosen RV is defined on, otherwise the modeled distribution would not be
a valid probability density. Consequently, an OR node in an XCNet is totally
selected at random, while for ExtraTrees the best of the random selection is ac-
tually employed. Lastly, an XCNet only slightly underperforms a corresponding
non-random model, while a single ExtraTree is generally a weak learner whose
“raison d’etre” is to be a component in an ensemble [10].

It is tempting to further reduce the complexity of XCNet by substituting
CLTrees with even simpler models. As stated in Proposition 1, learning PoBs
reduces the complexity to be linear w.r.t. n. Clearly, we do not expect a CNet
with PoBs as leaves to achieve a better likelihood than one with CLtrees. Nev-
ertheless, we intend to measure how the likelihood degrades with less expressive
leaf distributions and, at the same time, how faster this variant can be.

5 Experiments

The research questions we are validating are: Q1) how much does extreme ran-
domization affect the performance of an XCNet when compared to the optimal
one learned with dCSN on real data? Q2) how accurate are ensembles of XC-
Nets and how do they compare against all other CNet ensembling techniques
and state-of-the-art density estimators? Q3) how scalable are and how much
time do actually XCNets save in practice?

We answer all the above questions by performing our experiments5 on 20
de-facto standard benchmark datasets for density estimation. Introduced by [15]

5 Source code of dCSN and XCNet in C++11 and the scripts to replicate the experi-
ments are made available at https://github.com/nicoladimauro/cnet. All exper-

https://github.com/nicoladimauro/cnet

Table 1. Datasets used and their statistics.

dataset n mtrain mval mtest dataset n mtrain mval mtest

NLTCS 16 16181 2157 3236 DNA 180 1600 400 1186
MSNBC 17 291326 38843 58265 Kosarek 190 33375 4450 6675
KDDCup2k 65 180092 19907 34955 MSWeb 294 29441 3270 5000
Plants 69 17412 2321 3482 Book 500 8700 1159 1739
Audio 100 15000 2000 3000 EachMovie 500 4525 1002 591
Jester 100 9000 1000 4116 WebKB 839 2803 558 838
Netflix 100 15000 2000 3000 Reuters-52 889 6532 1028 1540
Accidents 111 12758 1700 2551 20NewsG 910 11293 3764 3764
Retail 135 22041 2938 4408 BBC 1058 1670 225 330
Pumsb-star 163 12262 1635 2452 Ad 1556 2461 327 491

Table 2. Average test log likelihoods for all (for XCNet models mean and standard
deviation over 10 runs are reported).

dataset entCNet dCSN XCNet dCSNPoB XCNetPoB

NLTCS -6.06 -6.03 6.06±0.01 -6.09 -6.17±0.05
MSNBC -6.05 -6.05 -6.09±0.02 -6.05 -6.18±0.03
KDDCup2k - -2.18 -2.19±0.01 -2.19 -2.21±0.01
Plants -13.25 -13.25 -13.43±0.07 -14.89 -15.66±0.22
Audio -42.05 -42.10 -42.66±0.14 -42.95 -44.02±0.22
Jester -55.56 -55.40 -56.10±0.19 -56.23 -57.39±0.15
Netflix -58.71 -58.71 -59.21±0.06 -60.20 -61.40±0.25
Accidents -30.69 -29.84 -31.58±0.24 -36.24 -40.22±0.46
Retail -10.94 -11.24 -11.44±0.09 -11.06 -11.19±0.04
Pumsb-star -24.42 -23.91 -25.55±0.34 -32.11 -39.91±2.48
DNA -87.59 -87.31 -87.67±0.00 -98.83 -99.84±0.05
Kosarek -11.04 -11.20 -11.70±0.13 -11.38 -11.80±0.07
MSWeb -10.07 -10.10 -10.47±0.10 -10.19 -10.43±0.07
Book -37.35 -38.93 -42.36±0.28 -38.21 -39.47±0.33
EachMovie -58.37 -58.06 -60.71±0.89 -59.70 -62.58±0.38
WebKB -162.17 -161.92 -167.45±1.59 -168.7 -174.78±0.81
Reuters-52 -88.55 -88.65 -99.52±1.93 -90.51 -100.25±0.57
20NewsG - -161.72 -172.6±1.40 -162.25 -167.39±0.74
BBC -263.08 -261.79 -261.79±0.00 -264.56 -274.83±1.15
Ad -16.92 -16.34 -18.70±1.44 -36.44 -36.94±1.41

and [11], they are binarized versions of real data from different tasks like frequent
itemset mining, recommendation and classification. We adopt their classic splits
for training, validation (hyperparameter selection) and testing. Detailed names
and statistics are reported in Table 1. Additionally, for the qualitative experi-
ments in Section 5.1 we employ the first 10000 training 28× 28 pixel images of
digits of MNIST, binarized as in [14].

5.1 (Q1) Single model performances

Likelihood performances. Table 2 reports the results, as the average test
log-likelihoods, for all the benchmarks for a entropy-based CNet (entCNet) as
reported in [9], a CNet learned with dCSN, and a XCNet (XCNet). Furthermore,

iments have been run on a 4-core Intel Xeon E312xx (Sandy Bridge) @2.0 GHz with
8Gb of RAM and Ubuntu 14.04.1, kernel 3.13.0-39.

Fig. 2. Negative log-likelihood during learning CNets and XCNets.

we learned a CNet (dCSNPoB) and a XCnet (XCNetPoB) with PoBs as leaf distri-
butions6. For the two XCnets variants for each dataset the reported results are
the average and the standard deviation over 10 different runs. Clearly, the best
scores are achieved by dCSN with entCNet following it soon after. Nevertheless,
all the log-likelihoods achieved by XCNet are only slightly worse and always on
the same order of magnitude if compared to non random models, while PoB vari-
ants perform considerably worse. We plot the training and test log-likelihoods
achieved by dCSN and XCNet models, both ran with δ = 100, while adding nodes
during learning in Figure 2. It is possible to note how, on those datasets, dCSN
grows CNets that start overfitting much earlier, while the aleatory nature of
XCNet slows the process down and mitigates the effect.

The worst performance is obtained on Ad, with XCNet scoring a relative
decrease of 14.46% of the log-likelihood w.r.t. dCSN, while PoB degrade it up to
%126.077. These results are very encouraging but not highly surprisingly given
our interpretation of CNets as mixture of experts. Moreover this stresses the
difference between XCNets with CLTrees and ExtraTrees [10], since a single
extremely randomized tree performs much worse than a non-random tree, a
behavior we can associate to XCNets with PoBs as leaf distributions.

Generating samples. It is worth investigating how good is an XCNet at gen-
erating samples w.r.t. a CNet learned by dCSN. While results from the previous
section can give us a fairly confident estimate according to sample log-likelihoods,
these values may not align to the human evaluation of a sample quality [25]. For
this reason we perform a qualitative evaluation on samples drawn from XCNets
and CNets learned on the first 10000 samples of a binarized version of MNIST
with fixed parameters δ = 50, α = 0.01, and σ = 4.

We randomly sampled 25 digits from both models comparing them to the
nearest neighbor in the training set, ensuring that the generated samples are
not simple memorization, as reported in Figure 3. It is evident how both models
have not memorized the training samples. Since it is not possible to visually
spot very relevant differences between the two sample sets, we can confirm that

6 The following grid search to learn CNets with dCSN, XCNet, dCSNPoB, and XCNetPoB
has been performed: δ ∈ {300, 500, 1000, 2000}, α ∈ {0.1, 0.2, 0.5, 1, 2} and σ = 4.

7 The relative decrease is computed as `D(XCNet)−`D(dCSN)
`D(dCSN)

· 100.

(a) (b) (c) (d)

Fig. 3. Samples obtained from a CNet (a), resp. XCNet (c), learned on samples of the
binarized MNIST dataset, and their nearest neighbor in training set (b), resp. (d).

Table 3. Average test log likelihoods for all ensembles and other competitors.

ensembles competitors

dataset CNet40 CNet40boost dCSN40 XCNet40PoB XCNet40 XCNet500 ID-SPN ACMN WM

NLTCS -6.00 -6.01 -6.00 -6.01±0.00 -6.00±0.00 -5.99 -6.02 -6.00 -6.02
MSNBC -6.08 -6.15 -6.05 -6.11±0.00 -6.06±0.00 -6.06 -6.04 -6.04 -6.04
KDDCup2k -2.14 -2.15 -2.15 -2.13±0.00 -2.13±0.00 -2.13 -2.13 -2.17 -2.16
Plants -12.32 -12.67 -12.59 -13.09±0.01 -11.99±0.00 -11.84 -12.54 -12.80 -12.65
Audio -40.09 -39.84 -40.19 -40.30±0.02 -39.77±0.02 -39.39 -39.79 -40.32 -40.50
Jester -52.88 -52.82 -52.99 -53.64±0.03 -52.65±0.02 -52.21 -52.86 -53.31 -53.85
Netflix -56.55 -56.44 -56.69 -57.64±0.03 -56.38±0.03 -55.93 -56.36 -57.22 -57.03
Accidents -29.88 -29.45 -29.27 -36.92±0.05 -29.31±0.02 -29.10 -26.98 -27.11 -26.32
Retail -10.84 -10.81 -11.17 -10.88±0.00 -10.93±0.01 -10.91 -10.85 -10.88 -10.87
Pumsb-star -23.98 -23.46 -23.78 -32.91±0.02 -23.44±0.01 -23.31 -22.41 -23.55 -21.72
DNA -81.07 -85.67 -85.95 -98.28±0.06 -84.96±0.03 -84.17 -81.21 -80.03 -80.65
Kosarek -10.74 -10.60 -10.97 -10.91±0.01 -10.72±0.01 -10.66 -10.60 -10.84 -10.83
MSWeb -9.77 -9.74 -9.93 -9.83±0.00 -9.66±0.01 -9.62 -9.73 -9.77 -9.70
Book -35.55 -34.46 -37.38 -34.77±0.02 -36.35±0.08 -35.45 -34.14 -35.56 -36.41
EachMovie -53.00 -51.53 -54.14 -51.66±0.11 -51.72±0.12 -50.34 -51.51 -55.80 -54.37
WebKB -153.12 -152.53 -155.47 -155.83±0.30 -153.01±0.28 -149.20 -151.84 -159.13 -157.43
Reuters-52 -83.71 -83.69 -86.19 -85.16±0.15 -84.05±0.24 -81.87 -83.35 -90.23 -87.55
20NewsG -156.09 -153.12 -156.46 -152.21±0.19 -153.89±0.15 -151.02 -151.47 -161.13 -158.95
BBC -237.42 -247.01 -248.84 -251.31±0.52 -238.47±0.69 -229.21 -248.93 -257.10 -257.86
Ad -15.28 -14.36 -15.55 -26.25±0.08 -14.20±0.08 -14.00 -19.05 -16.53 -18.35

Avrg rank
2.7 2.3 3.85 3.9 1.95

4.7 4.35 6.4 6.75 3.95 2.2 3.15 6.35 6.05

close log-likelihoods correspond to qualitatively similar samples for XCNets and
CNets.

5.2 (Q2) Ensemble performances

To investigate the performance of ensembles of XCNets we build ensembles of
40 components to be comparable with the approaches reported in Section 3.2
and introduced in [9,21,20]. We report in the first half of Table 3 the best results
for ensembles of bagged (CNet40) and boosted (CNet40boost) entropy-based CNets
taken from [20]8. Additionally, we learn an ensemble of 40 bagged CNets learned

8 Note that we report the best log-likelihood across more than one algorithmic variant,
hence these results can be considered to be derived from models optimized over more
parameters.

Table 4. Numbers of victories for the algorithms on the rows w.r.t those on columns.

model CNet40 CNet40boost dCSN40 XCNet40PoB XCNet40 XCNet500 ID-SPN ACMN WM Avrg

CNET40 7 15 16 6 1 7 14 15 10.12
CNET40

boost 13 15 16 7 3 4 16 14 11.00
dCSN40 4 4 12 2 1 3 11 12 6.12
XCNet40PoB 4 3 8 4 2 1 7 9 4.75
XCNet40 13 13 17 15 0 7 14 15 11.75
XCNet500 19 17 19 17 18 12 16 15 16.62
ID-SPN 13 15 17 18 11 7 16 13 13.75
ACMN 4 4 8 12 5 4 3 7 5.87
WM 5 6 8 11 5 5 5 12 7.12

with dCSN as in [9] (dCSN40) with a grid search over δ ∈ {1000, 2000}, α ∈
{0.1, 0.2} and σ = 4. Lastly, we train an ensemble of 40 XCNets (XCNet40)
and another ensemble of 40 XCNet with PoBs as leaf distributions by running a
grid search over δ ∈ {300, 500, 1000, 2000}, α ∈ {0.1, 0.2, 0.5, 1, 2} and σ = 4. For
these two random models Table 3 reports the average and the standard deviation
over 10 different runs. Note that we are not performing bagging for our XCNet
ensembles, since we do not draw bootstrapped samples of the data. This is
motivated by the intuition that randomization is a form of diversification in the
ensemble by itself, and it has been confirmed with a preliminary experimentation.

Next we compare CNet ensembles to other state-of-the-art TPMs learned
by employing much more sophisticated models as ID-SPN [22], ACMN [17]. The
first learns a complex hybrid architecture of SPNs and ACs while the latter
learns high treewidth MNs represented as tractable ACs. Lastly, we employ the
WinMine toolkit (WM) [3]. WM learns a treewidth unbounded BN exploiting
context sensitive independencies by modeling its CPTs as trees. These mod-
els results are taken from [22]. The 40 component ensemble XCNet40 already
delivers log-likelihoods comparable to those of the aforementioned models on
more than half datasets. Nevertheless, we investigate the effect of building a
large ensemble, up to 500 components (XCNet500) by running a grid search over
δ ∈ {300, 500, 1000, 2000}, α = 0.1 and σ = 4. On many datasets the log-
likelihood scores of such an ensemble are the best achieved in the literature.
Compared to XCNet40, results from XCNet500 generally improve, however, on
datasets like Nltcs and KDDCup2k the improvement saturated, suggesting that
adding more components does not diversify the ensemble anymore. It is worth
noting that XCNet40PoB is competitive on half datasets against a far more complex
model like WM, yet outperforming it in terms of speed of learning and inference.

We summarize comparisons among the algorithms in the first half of the
table (resp. all algorithms) through ranking over the twenty datasets. For each
dataset, we ranked the performance of the algorithms in the first half of the
table (resp. all the algorithms) from 1 to 5 (resp. 9) . The average rank of the
algorithms is reported in the last two rows of the Table 3, showing that a mixture
of XCNets performs the best. Finally, Table 4, reporting the number of victories
for each algorithm w.r.t. the others, shows again the performances of mixtures
of XCNet against the competitors that obtains 16.62 victories on average.

Table 5. Times (in seconds) taken to learn the best models on each dataset for dCSN,
XCNet, dCSNPoB, XCNetPoB, their ensembles and ID-SPN with default parameters.

dataset dCSN XCNet dCSNPoB XCNetPoB dCSN40 XCNet40PoB XCNet40 XCNet500 ID-SPN

NLTCS 0 0.2 0.1 0.01 10 0.2 0 3 310
MSNBC 12 0.3 0.7 0.01 499 13.1 13 155 46266
KDDCup2k 112 0.5 12.0 0.32 4126 21.2 16 247 32067
Plants 15 0.3 45.5 0.22 325 1.0 6 77 18833
Audio 58 0.3 74.8 0.48 980 0.8 6 136 21009
Jester 50 0.2 95.6 0.26 989 0.3 4 83 10412
Netflix 75 0.2 2.8 0.02 1546 0.4 9 118 30294
Accidents 54 0.2 153.7 0.04 996 0.7 11 138 15472
Retail 263 0.8 5.8 0.01 3780 3.2 13 164 4041
Pumsb-star 118 0.6 26.2 0.02 2260 0.8 23 290 20952
DNA 30 0.1 4.4 0.01 224 0.06 3 40 3040
Kosarek 588 2.4 41.2 0.01 10033 10.8 43 524 17799
MSWeb 1215 7.2 7.4 0.01 17123 13.2 129 1592 19682
Book 9235 9.7 113.0 0.04 155634 1.9 316 3476 61248
EachMovie 1297 7.1 4.7 0.01 16962 1.1 127 2601 118782
WebKB 4997 11.0 238.0 0.03 18875 0.9 190 2237 45451
Reuters-52 9947 39.3 24.3 0.05 65498 2.7 414 8423 70863
20NewsG 16866 51.3 40.7 0.01 153908 4.4 506 9883 163256
BBC 21381 8.4 7.3 0.02 69572 0.4 256 4251 61471
Ad 5212 116.5 134.0 0.08 75694 4.2 2403 30538 87522

5.3 (Q3) Running times

We derived the complexity for all considered variants of CNet learning schemes
thus proving that XCNets are the ones scaling better w.r.t. the number of the
features. Nevertheless, we empirically analyze XCNets learning times since we
want i) to evaluate whether and how much learning the leaf distribution actually
impacts on real data, ii) to compare the learning times of the density estimators
employed in the previous sections. While a non-theoretical comparison may fall
into the pitfalls of comparing different programming languages and optimization
schemes, we provide it as a rule of thumb for practitioners to decide on which
off-the-shelf density estimator toolbox to use.

In Table 5 we report the time, in seconds, spent by each algorithm to learn
the best model on each dataset. Even increasing the number of components one
order of magnitude more than what competitors are able to do in a reasonable
time, XCNet still learn a competitive model (see Table 3) in time lesser than
that of the competitors (see for instance the comparison w.r.t. ID-SPN).

6 Conclusions

We introduced XCNets, simplifying CNet learning through random conditioning.
When learned in ensembles, XCNets achieve the new state-of-the-art results for
density estimation on several benchmark datasets. Due to their simplicity to
implement, fast learning times, and accurate inference performances, XCNets
set the new baseline to compare against for density estimation with TPMs. As
future work we plan to exploit their mixture of experts interpretation to devise
more expressive gating functions that still perform exact and fast inference.

References

1. Bekker, J., Davis, J., Choi, A., Darwiche, A., Van den Broeck, G.: Tractable learn-
ing for complex probability queries. In: NIPS (2015)

2. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-
dence in bayesian networks. In: UAI (1996)

3. Chickering, M.: The winmine toolkit. Microsoft, Redmond (2002)
4. Choi, A., Van Den Broeck, G., Darwiche, A.: Tractable learning for structured

probability spaces: A case study in learning preference distributions. In: IJCAI
(2015)

5. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory (1968)

6. Darwiche, A.: A differential approach to inference in bayesian networks. JACM
(2003)

7. Di Mauro, N., Vergari, A., Esposito, F.: Multi-label classification with cutset net-
works. In: PGM (2016)

8. Di Mauro, N., Vergari, A., Basile, T.: Learning bayesian random cutset forests. In:
ISMIS (2015)

9. Di Mauro, N., Vergari, A., Esposito, F.: Learning accurate cutset networks by
exploiting decomposability. In: AIXIA (2015)

10. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. MLJ (2006)
11. Haaren, J.V., Davis, J.: Markov network structure learning: A randomized feature

generation approach. In: AAAI (2012)
12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.

Springer (2009)
13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press (2009)
14. Larochelle, H., Murray, I.: The Neural Autoregressive Distribution Estimator. In:

AISTATS (2011)
15. Lowd, D., Davis, J.: Learning Markov network structure with decision trees. In:

ICDM (2010)
16. Lowd, D., Domingos, P.: Naive bayes models for probability estimation. In: ICML

(2005)
17. Lowd, D., Rooshenas, A.: Learning markov networks with arithmetic circuits. In:

AISTATS (2013)
18. Meil, M., Jordan, M.I.: Learning with mixtures of trees. JMLR (2000)
19. Poon, H., Domingos, P.: Sum-product network: a new deep architecture. NIPS

Workshop on Deep Learning and Unsupervised Feature Learning (2011)
20. Rahman, T., Gogate, V.: Learning ensembles of cutset networks. In: AAAI (2016)
21. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: A simple, tractable, and

scalable approach for improving the accuracy of Chow-Liu trees. In: ECML/PKDD
(2014)

22. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect
variable interactions. In: ICML. pp. 710–718 (2014)

23. Roth, D.: On the hardness of approximate reasoning. AI (1996)
24. Scanagatta, M., Corani, G., de Campos, C.P., Zaffalon, M.: Learning treewidth-

bounded bayesian networks with thousands of variables. In: NIPS (2016)
25. Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative

models. In: ICLR (2016)
26. Vergari, A., Di Mauro, N., Esposito, F.: Simplifying, regularizing and strengthening

sum-product network structure learning. In: ECML/PKDD (2015)

