
Distributed Stochastic Optimization of Regularized Risk
via Saddle-point Problem

Shin Matsushima1�, Hyokun Yun2, Xinhua Zhang3, and S.V.N. Vishwanathan2,4

1 The University of Tokyo, Tokyo, Japan
shin matsushima@mist.i.u-tokyo.ac.jp

2 Amazon.com, WA 98170, USA yunhyoku@amazon.com
3 University of Illinois at Chicago, IL 60607, USA xzhang@uic.edu

4 University of California, Santa Cruz, CA 95064, USA vishy@ucsc.edu

Abstract. Many machine learning algorithms minimize a regularized risk, and
stochastic optimization is widely used for this task. When working with mas-
sive data, it is desirable to perform stochastic optimization in parallel. Unfortu-
nately, many existing stochastic optimization algorithms cannot be parallelized
efficiently. In this paper we show that one can rewrite the regularized risk min-
imization problem as an equivalent saddle-point problem, and propose an effi-
cient distributed stochastic optimization (DSO) algorithm. We prove the algo-
rithm’s rate of convergence; remarkably, our analysis shows that the algorithm
scales almost linearly with the number of processors. We also verify with em-
pirical evaluations that the proposed algorithm is competitive with other parallel,
general purpose stochastic and batch optimization algorithms for regularized risk
minimization.

1 Introduction

Regularized risk minimization is a well-known paradigm in machine learning:

min
w

P (w) := λ
∑
j

φj (wj) +
1

m

m∑
i=1

` (〈w,xi〉 , yi) . (1)

Here, we are given m training data points xi ∈ Rd and their corresponding labels
yi, while w ∈ Rd is the parameter of the model. Furthermore, wj denotes the j-th
component of w, while φj (·) is a convex function which penalizes complex models.
` (·, ·) is a loss function, which is convex in w. Moreover, 〈·, ·〉 denotes the Euclidean
inner product, and λ > 0 is a scalar which trades-off between the average loss and the
regularizer. For brevity, we will use `i (〈w,xi〉) to denote ` (〈w,xi〉 , yi).

Many well-known models can be derived by specializing (1). For instance, if yi ∈
{±1}, then setting φj(wj) = 1

2w
2
j and `i (〈w,xi〉) = max (0, 1− yi 〈w,xi〉) recovers

binary linear support vector machines (SVMs) [23]. On the other hand, using the same
regularizer but changing the loss function to `i (〈w,xi〉) = log (1 + exp (−yi 〈w,xi〉))
yields regularized logistic regression [11]. Similarly, setting φj (wj) = |wj | leads to
sparse learning such as LASSO [11] with `i (〈w,xi〉) = 1

2 (yi − 〈w,xi〉)2.

2 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

A number of specialized as well as general purpose algorithms have been proposed
for minimizing the regularized risk. For instance, if both the loss and the regularizer
are smooth, as is the case with logistic regression, then quasi-Newton algorithms such
as L-BFGS [17] have been found to be very successful. On the other hand, for smooth
regularizers but non-smooth loss functions, Teo et al. [27] proposed a bundle method
for regularized risk minimization (BMRM). Another popular first-order solver is alter-
nating direction method of multipliers (ADMM) [4]. These optimizers belong to the
broad class of batch minimization algorithms; that is, in order to perform a parameter
update, at every iteration they compute the regularized risk P (w) as well as its gradient

∇P (w) = λ

d∑
j=1

∇φj (wj) ej +
1

m

m∑
i=1

∇`i (〈w,xi〉)xi, (2)

where ej denotes the j-th standard basis vector. Both P (w) as well as the gradient
∇P (w) take O(md) time to compute, which is computationally expensive when m,
the number of data points, is large. Batch algorithms can be efficiently parallelized,
however, by exploiting the fact that the empirical risk 1

m

∑m
i=1 `i (〈w,xi〉) as well as

its gradient 1
m

∑m
i=1∇`i (〈w,xi〉)xi decompose over the data points, and therefore

one can compute P (w) and ∇P (w) in a distributed fashion [7].
Batch algorithms, unfortunately, are known to be unfavorable for large scale ma-

chine learning both empirically and theoretically [3]. It is now widely accepted that
stochastic algorithms which process one data point at a time are more effective for reg-
ularized risk minimization. In a nutshell, the idea here is that (2) can be stochastically
approximated by

gi = λ

d∑
j=1

∇φj (wj) ej +∇`i (〈w,xi〉)xi, (3)

when i is chosen uniformly random in {1, . . . ,m}. Note that gi is an unbiased estimator
of the true gradient ∇P (w); that is, Ei∈{1,...,m} [gi] = ∇P (w). Now we can replace
the true gradient by this stochastic gradient to approximate a gradient descent update as

w← w − ηgi, (4)

where η is a step size parameter. Computing gi only takes O(d) effort, which is inde-
pendent of m, the number of data points. Bottou and Bousquet [3] show that stochastic
optimization is asymptotically faster than gradient descent and other second-order batch
methods such as L-BFGS for regularized risk minimization.

However, a drawback of update (4) is that it is not easy to parallelize anymore.
Usually, the computation of gi in (3) is a very lightweight operation for which paral-
lel speed-up can rarely be expected. On the other hand, one cannot execute multiple
updates of (4) simultaneously, since computing gi requires reading the latest value of
w, while updating (4) requires writing to the components of w. The problem is even
more severe in distributed memory systems, where the cost of communication between
processors is significant.

Distributed Stochastic Optimization of the Regularized Risk 3

Existing parallel stochastic optimization algorithms try to work around these dif-
ficulties in a somewhat ad-hoc manner (see Section 4). In this paper, we take a fun-
damentally different approach and propose a reformulation of the regularized risk (1),
for which one can naturally derive a parallel stochastic optimization algorithm. Our
technical contributions are:

– We reformulate regularized risk minimization as an equivalent saddle-point prob-
lem, and show that it can be solved via a new distributed stochastic optimization
(DSO) algorithm.

– We prove O
(

1/
√
T
)

rates of convergence for DSO which is independent of num-
ber of processors and theoretically described almost linear dependence of total re-
quired time with the number of processors.

– We verify with empirical evaluations that when used for training linear support
vector machines (SVMs) or binary logistic regression models, DSO is comparable
to general-purpose stochastic (e.g., Zinkevich et al. [33]) or batch (e.g., Teo et al.
[27]) optimizers.

2 Reformulating Regularized Risk Minimization

We begin by reformulating the regularized risk minimization problem as an equivalent
saddle-point problem. Towards this end, we first rewrite (1) by introducing an auxiliary
variable ui for each xi:

min
w,u

λ

d∑
j=1

φj (wj) +
1

m

m∑
i=1

`i (ui) s.t. ui = 〈w,xi〉 ∀ i = 1, . . . ,m. (5)

By introducing Lagrange multipliers αi to eliminate the constraints, we obtain

min
w,u

max
α

λ

d∑
j=1

φj (wj) +
1

m

m∑
i=1

`i (ui) + αi(ui − 〈w,xi〉).

Here u denotes a vector whose components are ui. Likewise, α is a vector whose
components are αi. Since the objective function (5) is convex and the constraints are
linear, strong duality applies [5]. Therefore, we can switch the maximization over α and
the minimization over w,u. Note that minui αiui + `i(ui) can be written −`?i (−αi),
where `?i (·) is the Fenchel-Legendre conjugate of `i(·) [5]. The above transformations
yield to our formulation:

max
α

min
w

f (w,α) := λ

d∑
j=1

φj (wj)−
1

m

m∑
i=1

αi 〈w,xi〉 −
1

m

m∑
i=1

`?i (−αi) . (6)

If we analytically minimize f(w,α) in terms of w to eliminate it, then we obtain so-
called dual objective which is only a function of α. Moreover, any combination of w∗

which is a solution of the primal problem (1), and α∗ which is a solution of the dual
problem, forms a saddle point of f (w,α) [5]. In other words, minimizing the primal,
maximizing the dual, and finding a saddle point of f (w,α) are all equivalent problems.

4 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

2.1 Stochastic Optimization

Let xij denote the j-th coordinate of xi, and Ωi := {j : xij 6= 0} denote the non-zero
coordinates of xi. Similarly, let Ω̄j := {i : xij 6= 0} denote the set of data points where
the j-th coordinate is non-zero and Ω := {(i, j) : xij 6= 0} denotes the set of all non-
zero coordinates in the training dataset x1, . . . ,xm. Then, f(w,α) can be rewritten
as

f (w,α) =
∑

(i,j)∈Ω

λφj (wj)∣∣Ω̄j∣∣ − `?i (−αi)
m |Ωi|

− αiwjxij
m

=:
∑

(i,j)∈Ω

fi,j (wj , αi) ,

where |·| denotes the cardinality of a set. Remarkably, each component fi,j in the above
summation depends only on one component wj of w and one component αi of α. This
allows us to derive an optimization algorithm which is stochastic in terms of both i and
j. Let us define

gi,j :=

(
|Ω|

(
λ∇φj (wj)∣∣Ω̄j∣∣ − αixij

m

)
ej , |Ω|

(
∇`?i (−αi)
m |Ωi|

− wjxij
m

)
ei

)
. (7)

Under the uniform distribution over (i, j) ∈ Ω, one can easily see that gi,j is an unbi-
ased estimate of the gradient of f (w,α), that is, E{(i,j)∈Ω} [gi,j] = (∇wf (w,α) ,−∇α−f (w,α)).
Since we are interested in finding a saddle point of f (w,α), our stochastic optimiza-
tion algorithm uses the stochastic gradient gi,j to take a descent step in w and an ascent
step in α [19]:

wj ← wj − η

(
λ∇φj (wj)∣∣Ω̄j∣∣ − αixij

m

)
, αi ← αi + η

(
∇`?i (−αi)
m |Ωi|

− wjxij
m

)
. (8)

Surprisingly, the time complexity of update (8) is independent of the size of data; it is
O(1). Compare this with the O(md) complexity of batch update and O(d) complexity
of regular stochastic gradient descent.

Note that in the above discussion, we implicitly assumed that φj (·) and `?i (·) are
differentiable. If that is not the case, then their derivatives can be replaced by sub-
gradients [5]. Therefore this approach can deal with wide range of regularized risk
minimization problem.

3 Parallelization

The minimax formulation (6) not only admits an efficient stochastic optimization al-
gorithm, but also allows us to derive a distributed stochastic optimization (DSO) algo-
rithm. The key observation underlying DSO is the following: Given (i, j) and (i′, j′)
both in Ω, if i 6= i′ and j 6= j′ then one can simultaneously perform update (8) on
(wj , αi) and (wj′ , αi′). In other words, the updates to wj and αi are independent of the
updates to wj′ and αi′ , as long as i 6= i′ and j 6= j′.

Distributed Stochastic Optimization of the Regularized Risk 5

α(4)

α(3)

α(2)

α(1)

w(1) w(2) w(3) w(4)

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

X

α(4)

α(3)

α(2)

α(1)

w(1) w(2) w(3) w(4)

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

X

Fig. 1. Illustration of DSO with 4 processors. The rows of the data matrix X as well as the
parameters w and α are partitioned as shown. Colors denote ownerships. The active area of each
processor is in dark colors. Left: the initial state. Right: the state after one bulk synchronization.

Before we formally describe DSO we would like to present some intuition using
Figure 1. Here we assume that we have 4 processors. The data matrix X is an m × d
matrix formed by stacking x>i for i = 1, . . . ,m, while w and α denote the parameters
to be optimized. The non-zero entries of X are marked by an x in the figure. Initially,
both parameters as well as rows of the data matrix are partitioned across processors as
depicted in Figure 1 (left); colors in the figure denote ownership e.g., the first processor
owns a fraction of the data matrix and a fraction of the parameters α and w (denoted
as w(1) and α(1)) shaded with red. Each processor samples a non-zero entry xij of
X within the dark shaded rectangular region (active area) depicted in the figure, and
updates the correspondingwj and αi. After performing updates, the processors stop and
exchange coordinates of w. This defines an inner iteration. After each inner iteration,
ownership of the w variables and hence the active area change, as shown in Figure 1
(right). If there are p processors, then p inner iterations define an epoch. Each coordinate
of w is updated by each processor at least once in an epoch. The algorithm iterates over
epochs until convergence.

Four points are worth noting. First, since the active area of each processor does not
share either row or column coordinates with the active area of other processors, as per
our key observation above, the updates can be carried out by each processor in paral-
lel without any need for intermediate communication with other processors. Second,
we partition and distribute the data only once. The coordinates of α are partitioned
at the beginning and are not exchanged by the processors; only coordinates of w are
exchanged. This means that the cost of communication is independent of m, the num-
ber of data points. Third, our algorithm can work in both shared memory, distributed
memory, and hybrid (multiple threads on multiple machines) architectures. Fourth, the
w parameter is distributed across multiple machines and there is no redundant storage,
which makes the algorithm scale linearly in terms of space complexity. Compare this
with the fact that most parallel optimization algorithms require each local machine to
hold a copy of w.

To formally describe DSO, suppose p processors are available, and let I1, . . . , Ip
denote a fixed partition of the set {1, . . . ,m} and J1, . . . , Jp denote a fixed partition of
the set {1, . . . , d} such that |Iq| ≈ |Iq′ | and |Jr| ≈ |Jr′ | for any 1 ≤ q, q′, r, r′ ≤ p. We

6 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

Algorithm 1 Distributed stochastic optimization (DSO) for finding saddle point of (6)
1: Each processor q ∈ {1, 2, . . . , p} initializes w(q), α(q)

2: t← 1
3: repeat
4: ηt ← η0/

√
t

5: for all r ∈ {1, 2, . . . , p} do
6: for all processors q ∈ {1, 2, . . . , p} in parallel do
7: for (i, j) ∈ Ω(q,σr(q)) do

8: wj ← wj − ηt
(
λ∇φj(wj)
|Ω̄j | − αixij

m

)
, αi ← αi + ηt

(
∇`?i (−αi)

m|Ωi| −
wjxij
m

)
9: end for

10: send w(σr(q)) to machine σ−1
r+1(σr(q)) and receive w(σr+1(q))

11: end for
12: end for
13: t← t+ 1
14: until convergence

partition the data {x1, . . . ,xm} and the labels {y1, . . . , ym} into p disjoint subsets ac-
cording to I1, . . . , Ip and distribute them to p processors. The parameters {α1, . . . , αm}
are partitioned into p disjoint subsets α(1), . . . ,α(p) according to I1, . . . , Ip while
{w1, . . . , wd} are partitioned into p disjoint subsets w(1), . . . ,w(p) according to J1, . . . , Jp
and distributed to p processors, respectively. The partitioning of {1, . . . ,m} and {1, . . . , d}
induces a p× p partition of Ω:

Ω(q,r) := {(i, j) ∈ Ω : i ∈ Iq, j ∈ Jr} , ∀ q, r ∈ {1, . . . , p} .

The execution of DSO proceeds in epochs, and each epoch consists of p inner iterations;
at the beginning of the r-th inner iteration (r ≥ 1), processor q owns w(σr(q)) where
σr (q) := {(q + r − 2) mod p}+ 1, and executes stochastic updates (8) on coordinates
in Ω(q,σr(q)). Since these updates only involve variables in α(q) and w(σ(q)), no com-
munication between processors is required to execute them. After every processor has
finished its updates, w(σr(q)) is sent to machine σ−1r+1 (σr (q)) and the algorithm moves
on to the (r+ 1)-st inner iteration. Detailed pseudo-code for the DSO algorithm can be
found in Algorithm 1.

3.1 Convergence Analysis

It is known that the stochastic procedure in section 2.1 is guaranteed to converge to
asaddle point of f(w,α) if (i, j) is randomly accessed [19]. The main technical diffi-
culty in proving convergence in our case is due to the fact that DSO does not sample
(i, j) coordinates uniformly at random due to its distributed nature. Therefore, first we
prove that DSO is serializable in a certain sense, that is, there exists an ordering of the
updates such that replaying them on a single machine would recover the same solution
produced by DSO. We then analyze this serial algorithm to establish convergence. We
believe that this proof technique is of independent interest, and differs significantly from
convergence analysis for other parallel stochastic algorithms which typically assume

Distributed Stochastic Optimization of the Regularized Risk 7

correlation between data points [e.g. 6, 15]. We first formally state the main theorem
and then prove 3 lemmas. Finally we give a proof of the main theorem in the last part
of this section.

Theorem 1. Let (wt,αt) and
(
w̃t, α̃t

)
:=
(

1
t

∑t
s=1 w

s, 1t
∑t
s=1 α

s
)

denote the pa-
rameter values, and the averaged parameter values respectively after the t-th epoch
of Algorithm 1. Moreover, assume that ‖w‖ , ‖α‖ , |∇φj(wj)| , |∇`?i (−αi)| , and λ are
upper bounded by a constant c > 1. Then, there exists a constant C, which is dependent
only on c, such that after T epochs the duality gap is

max
α

f
(
w̃T ,α

)
−min

w
f
(
w, α̃T

)
≤ C

√
d√
T
. (9)

On the other hand, if φj(s) = 1
2s

2,
√

maxi |Ωi| < m and ηt < 1
λ hold, then there

exists a different constant C ′ dependent only on c and satisfying

max
α′

f
(
w̃T ,α′

)
−min

w′
f
(
w′, α̃T

)
≤ C ′√

T
. (10)

The first lemma states that there exists an ordering of the pairs of coordinates (i, j)s
that recovers the solution produced by DSO.

Lemma 1. On the inner iterations of the t-th epoch of Algorithm 1, let us index all
(i, j) ∈ Ω as (ik, jk) by k = 1, . . . , |Ω| as follows: a < b if updates to (wja , αia) were
performed before updating (wjb , αib). On the other hand, if (wja , αia) and (wjb , αib)
were updated at the same time because we have p processors simultaneously updating
the parameters, then the updates are ordered according to the rank of the processor per-
forming the update5. Then, denote the parameter values after k updates by (wt

k,α
t
k).

For all k and t we have

wt
k = wt

k−1 − ηt∇wfk
(
wt
k−1,α

t
k−1
)

(11)

αtk = αtk−1 − ηt∇α−fk
(
wt
k−1,α

t
k−1
)
, (12)

where

fk(w,α) := fik,jk (wjk , αik) .

Proof. Let q be the processor which performed the k-th update in the (t+ 1)-st epoch.
Moreover, let (k − δ) be the most recent previous update done by processor q. There
exists 1 ≤ δ′, δ′′ ≤ δ such that

(
wt
k−δ′ ,α

t
k−δ′′

)
be the parameter values read by the

q-th processor to the perform k-th update. Because of our data partitioning scheme,
only q can change the value of the ik-th component of α and the jk-th component of
w. Therefore, we have

αtk−1,ik = αtκ,ik , and wk−1,jk = wtκ,jk , k − δ ≤ ∀κ ≤ k − 1.

5 Any other tie-breaking rule would also suffice.

8 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

Since fk is invariant to changes in any coordinate other than (ik, jk), we have

fk
(
wt
k−δ′ ,α

t
k−δ′′

)
= fk

(
wt
k−1,α

t
k−1
)
.

The claim holds because we can write the k-th update formula as

wt
k = wt

k−1 − ηt∇wfk
(
wt
k−δ′ ,α

t
k−δ′′

)
and (13)

αtk = αtk−1 − ηt∇α−fk
(
wt
k−δ′ ,α

t
k−δ′′

)
. (14)

Next, we prove the following technical lemma that shows a sufficient condition
to establish a global convergence of general iterative algorithms on general convex-
concave functions. Note that it is closely related to well-known results on convex func-
tions (e.g., Theorem 3.2.2 in [20], Lemma 14. 1. in [24]).

Lemma 2. Suppose there exists D > 0 and C > 0 such that for all (w,α) and
(w′,α′) we have ‖w −w′‖2 + ‖α−α′‖2 ≤ D, and for all t = 1, . . . , T and all
(w,α) we have∥∥wt+1 −w

∥∥2 +
∥∥αt+1 −α

∥∥2 ≤∥∥wt −w
∥∥2 +

∥∥αt −α
∥∥2

− 2ηt
(
f
(
wt,α

)
− f

(
w,αt

))
+ Cη2t , (15)

then setting ηt =
√

D
2Ct ensures that

max
α′

f
(
w̃T ,α′

)
−min

w′
f
(
w′, α̃T

)
≤
√

2DC

T
. (16)

Proof. Rearrange (15) and divide by ηt to obtain

2
(
f
(
wt,α

)
− f

(
w,αt

))
≤ ηtC +

1

ηt

(∥∥wt −w
∥∥2 +

∥∥αt −α
∥∥2

−
∥∥wt+1 −w

∥∥2 − ∥∥αt+1 −α
∥∥2).

Summing the above for t = 1, . . . , T yields

2

T∑
t=1

f
(
wt,α

)
− 2

T∑
t=1

f
(
w,αt

)
≤

T∑
t=1

ηtC +
1

η1

(∥∥w1 −w
∥∥2 +

∥∥α1 −α
∥∥2)

+

T−1∑
t=2

(
1

ηt+1
− 1

ηt

)(∥∥wt −w
∥∥2 +

∥∥αt −α
∥∥2)

− 1

ηT

(∥∥wT+1 −w
∥∥2 +

∥∥αT+1 −α
∥∥2)

≤
T∑
t=1

ηtC +
1

η1
D +

T−1∑
t=2

(
1

ηt+1
− 1

ηt

)
D

≤
T∑
t=1

ηtC +
1

ηT
D. (17)

Distributed Stochastic Optimization of the Regularized Risk 9

On the other hand, thanks to convexity in w and concavity in α, we see

f
(
w̃T ,α

)
≤ 1

T

T∑
t=1

f
(
wt,α

)
, and − f

(
w, α̃T

)
≤ 1

T

T∑
t=1

−f
(
w,αt

)
.

Using them for (17) and letting ηt =
√

D
2Ct leads to the following inequalities

f
(
w̃T ,α

)
− f

(
w, α̃T

)
≤
∑T
t=1 ηtC + 1

ηT
D

2T
≤
√
DC

2T

T∑
t=1

1√
2t

+

√
DC

2T
.

The claim in (16) follows by using
∑T
t=1

1√
2t
≤
√

2T .

In order to derive (9), C of (15) has to be the order of d. In case of L2-regularizer,
it has to be dependent only on c to obtain (10). The last lemma validates them. The
proof is technical, and related to techniques outlined in Nedić and Bertsekas [18]. See
Appendix for the proof.

Lemma 3. Under the assumptions outlined in Theorem 1, (13) and (14), (15) is satis-
fied with C of the form of C = C1d. It does with C = C2 in case of L2-regularizer.
Here C1 and C2 are dependent only on c.

The proof of Theorem 1 can be shown in a very simple form given those 3 lemmas.

Proof. Because the parameter produced by Algorithm 1 is the same as one defined
by (13) and (14), it is sufficient to show (13) and (14) lead to the statements in the
theorem. From lemma 3 and the fact that ‖w −w′‖2 + ‖α−α′‖2 ≤ 8c2, (16) of
lemma 2 holds with

√
CD = 2c

√
2C1d for general case and

√
CD = 2c

√
2C2 in case

of L2-regularizer, where C1 and C2 are dependent only on c. This immediately implies
(9) and (10).

To understand the implications of the above theorem, let us assume that Algorithm 1
is run with p ≤ min (m, d) processors with a partitioning of Ω such that

∣∣Ω(q,σr(q))
∣∣ ≈

|Ω|
p2 and |Jq| ≈ d

p for all q. Let us denote time amount taken in performing updates in one
epoch by Tu, which is ofO(|Ω|). Moreover, let us assume that communicating w across
the network takes time amount denoted by Tc, which is of O(d), and communicating a
subset of w takes time proportional to its cardinality.Under these assumptions, the time
for each inner iteration of Algorithm 1 can be written as∣∣Ω(q,σr(q))

∣∣
|Ω|

Tu +

∣∣Jσr(q)

∣∣
d

Tc ≈
Tu
p2

+
Tc
p
.

Since there are p inner iterations per epoch, the time required to finish an epoch is
Tu/p+ Tc. As per Theorem 1 the number of epochs to obtain an ε accurate solution is
independent of p. Therefore, one can conclude that DSO scales linearly in p as long as
Tu/Tc � p holds. As is to be expected, for large enough p the cost of communication
Tc will eventually dominate.

10 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

Table 1. Summary of the datasets used in our experiments. m is the total # of examples, d is
the # of features, s is the feature density (% of features that are non-zero). K/M/G denotes a
thousand/million/billion.

Name m d |Ω| s(%)
real-sim 57.76K 20.95K 2.97M 0.245
webspam-t 350.00K 16.61M 1.28G 0.022

4 Related Work

Effective parallelization of stochastic optimization for regularized risk minimization
has received significant research attention in recent years. Because of space limitations,
our review of related work will unfortunately only be partial.

The key difficulty in parallelizing update (4) is that gradient calculation requires us
to read, while updating the parameter requires us to write to the coordinates of w. Con-
sequently, updates have to be executed in serial. Existing work has focused on working
around the limitation of stochastic optimization by either a) introducing strategies for
computing the stochastic gradient in parallel (e.g., Langford et al. [15]), b) updating
the parameter in parallel (e.g., Bradley et al. [6], Recht et al. [21]), c) performing inde-
pendent updates and combining the resulting parameter vectors (e.g., Zinkevich et al.
[33]), or d) periodically exchanging information between processors (e.g., Bertsekas
and Tsitsiklis [2]). While the former two strategies are popular in the shared memory
setting, the latter two are popular in the distributed memory setting. In many cases the
convergence bounds depend on the amount of correlation between data points and are
limited to the case of strongly convex regularizer (Hsieh et al. [12], Yang [30], Zhang
and Xiao [32]). In contrast our bounds in Theorem 1 do not depend on such properties
of data and more general.

Algorithms that use so-called parameter server to synchronize variable updates
across processors have recently become popular (e.g., Li et al. [16]). The main drawback
of these methods is that it is not easy to “serialize” the updates, that is, to replay the up-
dates on a single machine. This makes proving convergence guarantees, and debugging
such frameworks rather difficult, although some recent progress has been made [16].

The observation that updates on individual coordinates of the parameters can be
carried out in parallel has been used for other models. In the context of Latent Dirichlet
Allocation, Yan et al. [29] used a similar observation to derive an efficient GPU based
collapsed Gibbs sampler. On the other hand, for matrix factorization Gemulla et al. [10]
and Recht and Ré [22] independently proposed parallel algorithms based on a similar
idea. However, to the best of our knowledge, rewriting (1) as a saddle point problem in
order to discover parallelism is our novel contribution.

5 Experimental Results

5.1 Dataset and Implementation Details

We implemented DSO, SGD, and PSGD ourselves, while for BMRM we used the op-
timized implementation that is available from the toolkit for advanced optimization

Distributed Stochastic Optimization of the Regularized Risk 11

0 5 10 15

10

20

30

number of processors

av
g.

tim
e

pe
re

po
ch

webspam-t

predicted

observed

Fig. 2. The average time per epoch using p machines on the webspam-t dataset.

(TAO, https://bitbucket.org/sarich/tao-2.2). All algorithms are im-
plemented in C++ and use MPI for communication. In our multi-machine experiments,
each algorithm was run on four machines with eight cores per machine. DSO, SGD,
and PSGD used AdaGrad [8] step size adaptation. We also used stochastic variance
reduced gradient (SVRG) of Johnson and Zhang [14] to accelerate updates of DSO.
In the multi-machine setting DSO initializes parameters of each MPI process by lo-
cally executing twenty iterations of dual coordinate descent [9] on its local data to
locally initialize wj and αi parameters; then wj values were averaged across machines.
We chose binary logistic regression and SVM as test problems, i.e., φj(s) = 1

2s
2 and

`i(u) = log(1+exp(−u)), [1−u]+. To prevent degeneracy in logistic regression, values
of αi’s are restricted to (10−14, 1−10−14), while in the case of linear SVM they are re-
stricted to [0, 1]. Similarly, the wj’s are restricted to lie in the interval [−1/

√
λ, 1/

√
λ]

for linear SVM and [−
√

log(2)/λ,
√

log(2)/λ] for logistic regression, following the
idea of Shalev-Shwartz et al. [25].

5.2 Scalability of DSO

We first verify, that the per epoch complexity of DSO scales as Tu/p+ Tc, as predicted
by our analysis in Section 3.1. Towards this end, we took the webspam-t dataset of
Webb et al. [28], which is one of the largest datasets we could comfortably fit on a
single machine. We let p = {1, 2, 4, 8, 16} while fixing the number of cores on each
machine to be 4.

Using the average time per epoch on one and two machines, one can estimate Tu and
Tc. Given these values, one can then predict the time per iteration for other values of p.
Figure 2 shows the predicted time and the measured time averaged over 40 epochs. As
can be seen, the time per epoch indeed goes down as ≈ 1/p as predicted by the theory.
The test error and objective function values on multiple machines was very close to the
test error and objective function values observed on a single machine, thus confirming
Theorem 1.

12 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

0 10 20 30 40

5 · 10−2

0.1

0.15

0.2

number of iteration

te
st

er
ro

r

λ = 10−5

SGD

BMRM

DSO

0 10 20 30 40

5 · 10−2

0.1

0.15

0.2

number of iteration

te
st

er
ro

r

λ = 10−6

SGD

BMRM

DSO

Fig. 3. The test error of different optimization algorithms on linear SVM with real-sim dataset,
as a function of the number of iteration.

0 50 100 150 200 250 300

5 · 10−2

0.1

0.15

0.2

time (seconds)

te
st

er
ro

r

λ = 10−5

BMRM

PSGD

DSO

0 50 100 150 200 250 300

5 · 10−2

0.1

0.15

0.2

time (seconds)

te
st

er
ro

r

λ = 10−6

BMRM

PSGD

DSO

Fig. 4. The test error of different optimization algorithms on logistic regression with webspam-t
dataset. Test error as a function of elapsed time.

5.3 Comparison with Other Solvers

In our single machine experiments we compare DSO with stochastic gradient descent
(SGD) and bundle methods for regularized risk minimization (BMRM) of Teo et al.
[27]. In our multi-machine experiments we compare with parallel stochastic gradient
descent (PSGD) of Zinkevich et al. [33] and BMRM. We chose these competitors be-
cause, just like DSO, they are general purpose solvers for regularized risk minimization
(1), and hence can solve non-smooth problems such as SVMs as well as smooth prob-
lems such as logistic regression. Moreover, BMRM is a specialized solver for regular-
ized risk minimization, which has similar performance to other first-order solvers such
as ADMM.

We selected two representative datasets and two values of the regularization param-
eter λ =

{
10−5, 10−6

}
to present our results. For the single machine experiments we

used the real-sim dataset from Hsieh et al. [13], while for the multi-machine ex-
periments we used webspam-t. Details of the datasets can be found in Table 1 in the
appendix. We use test error rate as comparison metric, since stochastic optimization

Distributed Stochastic Optimization of the Regularized Risk 13

0 50 100 150 200 250 300

5 · 10−2

0.1

0.15

0.2

time (seconds)

te
st

er
ro

r

λ = 10−5

BMRM

PSGD

DSO

0 50 100 150 200 250 300

5 · 10−2

0.1

0.15

0.2

time (seconds)

te
st

er
ro

r

λ = 10−6

BMRM

PSGD

DSO

Fig. 5. Test errors of different parallel optimization algorithms on linear SVM with webspam-t
dataset, as a function of elapsed time.

algorithms are efficient in terms of minimizing generalization error, not training error
[3]. The results for single machine experiments on linear SVM training can be found in
Figure 3. As can be seen, DSO shows comparable efficiency to that of SGD, and out-
performs BMRM. This demonstrates that saddle-point optimization is a viable strategy
even in serial setting.

Our multi-machine experimental results for linear SVM training can be found in
Figure 5. As can be seen, PSGD converges very quickly, but the quality of the final
solution is poor; this is probably because PSGD only solves processor-local problems
and does not have a guarantee to converge to the global optimum. On the other hand,
both BMRM and DSO converges to similar quality solutions, and at fairly comparable
rates. Similar trends we observed on logistic regression. Therefore we only show the
results with 10−5 in Figure 4.

5.4 Terascale Learning with DSO

Next, we demonstrate the scalability of DSO on one of the largest publicly available
datasets. Following the same experimental setup as Agarwal et al. [1], we work with the
splice site recognition dataset [26] which contains 50 million training data points, each
of which has around 11.7 million dimensions. Each datapoint has approximately 2000
non-zero coordinates and the entire dataset requires around 3 TB of storage. Previously
[26], it has been shown that sub-sampling reduces performance, and therefore we need
to use the entire dataset for training.

Similar to Agarwal et al. [1], our goal is not to show the best classification accuracy
on this data (this is best left to domain experts and feature designers). Instead, we wish
to demonstrate the scalability of DSO and establish that a) it can scale to such mas-
sive datasets, and b) the empirical performance as measured by AUPRC (Area Under
Precision-Recall Curve) improves as a function of time.

We used 14 machines with 8 cores per machine to train a linear SVM, and plot
AUPRC as a function of time in Figure 6. Since PSGD did not perform well in earlier

14 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0.1

0.2

0.3

0.4

0.5

time (seconds)

A
U

PR
C

λ = 10−5

DSO
BMRM

Fig. 6. AUPRC (Area Under Precision-Recall Curve) as a function of elapsed time on linear SVM
with splice site recognition dataset.

experiments, here we restrict our comparison to BMRM. This experiment demonstrates
one of the advantages of stochastic optimization, namely that the test performance in-
creases steadily as a function of the number of iterations. On the other hand, for a batch
solver like BMRM the AUPRC fluctuates as a function of the iteration number. The
practical consequence of this observation is that, one usually needs to wait for a batch
optimizer to converge before using the resulting solution. On the other hand, even the
partial solutions produced by a stochastic optimizer such as DSO usually exhibit good
generalization properties.

6 Discussion and Conclusion

We presented a new reformulation of regularized risk minimization as a saddle point
problem and showed that one can derive an efficient distributed stochastic optimizer
(DSO). We also proved rates of convergence of DSO. Unlike other solvers, our algo-
rithm does not require strong convexity and thus has wider applicability. Our experi-
mental results show that DSO is competitive with state-of-the-art optimizers such as
BMRM and SGD, and outperforms simple parallel stochastic optimization algorithms
such as PSGD.

A natural next step is to derive an asynchronous version of DSO algorithm along
the lines of the NOMAD algorithm proposed by Yun et al. [31]. We can see that our
convergence proof which only relies on having an equivalent serial sequence of updates
will still apply. Of course, there is also more room to further improve the performance of
DSO by deriving better step size adaptation schedules, and exploiting memory caching
to speed up random access.

Acknowledgments This work is partially supported by MEXT KAKENHI Grant Num-
ber 26730114 and JST-CREST JPMJCR1304.

Bibliography

[1] Agarwal, A., Chapelle, O., Dudı́k, M., Langford, J.: A reliable effective terascale
linear learning system. JMLR 15, 1111–1133 (2014)

[2] Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical
Methods (1997)

[3] Bottou, L., Bousquet, O.: The tradeoffs of large-scale learning. Optimization for
Machine Learning (2011)

[4] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
and Trends in ML 3(1), 1–123 (2010)

[5] Boyd, S., Vandenberghe, L.: Convex Optimization (2004)
[6] Bradley, J., Kyrola, A., Bickson, D., Guestrin, C.: Parallel coordinate descent for

L1-regularized loss minimization. In: ICML. pp. 321–328 (2011)
[7] Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.:

Map-reduce for machine learning on multicore. In: NIPS. pp. 281–288 (2006)
[8] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. JMLR 12, 2121–2159 (2010)
[9] Fan, R.E., Chang, J.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library

for large linear classification. JMLR 9, 1871–1874 (Aug 2008)
[10] Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factoriza-

tion with distributed stochastic gradient descent. In: KDD. pp. 69–77 (2011)
[11] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning

(2009)
[12] Hsieh, C.J., Yu, H.F., Dhillon, I.S.: PASSCoDe: Parallel ASynchronous Stochastic

dual Coordinate Descent. In: ICML (2015)
[13] Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coor-

dinate descent method for large-scale linear SVM. In: ICML. pp. 408–415 (2008)
[14] Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive

variance reduction. In: NIPS. pp. 315–323 (2013)
[15] Langford, J., Smola, A.J., Zinkevich, M.: Slow learners are fast. In: NIPS (2009)
[16] Li, M., Andersen, D.G., Smola, A.J., Yu, K.: Communication efficient distributed

machine learning with the parameter server. In: Neural Information Processing
Systems (2014)

[17] Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(3), 503–528 (1989)

[18] Nedić, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable
optimization. SIAM Journal on Optimization 12(1), 109–138 (2001)

[19] Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxi-
mation approach to stochastic programming. SIAM J. on Optimization 19(4),
1574–1609 (Jan 2009)

[20] Nesterov, Y.: Introductory Lectures On Convex Optimization: A Basic Course.
Springer (2004)

16 Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan

[21] Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In: NIPS. pp. 693–701 (2011)

[22] Recht, B., Ré, C.: Parallel stochastic gradient algorithms for large-scale matrix
completion. Mathematical Programming Computation 5(2), 201–226 (June 2013)

[23] Schölkopf, B., Smola, A.J.: Learning with Kernels (2002)
[24] Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning (2014)
[25] Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient

solver for SVM. In: ICML (2007)
[26] Sonnenburg, S., Franc, V.: COFFIN: a computational framework for linear SVMs.

In: ICML (2010)
[27] Teo, C.H., Vishwanthan, S.V.N., Smola, A.J., Le, Q.V.: Bundle methods for regu-

larized risk minimization. JMLR 11, 311–365 (January 2010)
[28] Webb, S., Caverlee, J., Pu, C.: Introducing the webb spam corpus: Using email

spam to identify web spam automatically. In: CEAS (2006)
[29] Yan, F., Xu, N., Qi, Y.: Parallel inference for latent Dirichlet allocation on graphics

processing units. In: NIPS, pp. 2134–2142 (2009)
[30] Yang, T.: Trading computation for communication: Distributed stochastic dual co-

ordinate ascent. In: NIPS (2013)
[31] Yun, H., Yu, H.F., Hsieh, C.J., Vishwanathan, S.V.N., Dhillon, I.S.: NOMAD:

Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decen-
tralized matrix completion. VLDB (2014)

[32] Zhang, Y., Xiao, L.: DiSCO: Distributed optimization for Self-Concordant empir-
ical loss. In: ICML (2015)

[33] Zinkevich, M., Smola, A.J., Weimer, M., Li, L.: Parallelized stochastic gradient
descent. In: NIPS. pp. 2595–2603 (2010)

