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Abstract. Clostridium difficile infection (CDI) is a common hospital
acquired infection with a $1B annual price tag that resulted in ∼30,000
deaths in 2011. Studies have shown that early detection of CDI signif-
icantly improves the prognosis for the individual patient and reduces
the overall mortality rates and associated medical costs. In this paper,
we present CREST: CDI Risk Estimation, a data-driven framework for
early and continuous detection of CDI in hospitalized patients. CREST
uses a three-pronged approach for high accuracy risk prediction. First,
CREST builds a rich set of highly predictive features from Electronic
Health Records. These features include clinical and non-clinical pheno-
types, key biomarkers from the patient’s laboratory tests, synopsis fea-
tures processed from time series vital signs, and medical history mined
from clinical notes. Given the inherent multimodality of clinical data,
CREST bins these features into three sets: time-invariant, time-variant,
and temporal synopsis features. CREST then learns classifiers for each
set of features, evaluating their relative effectiveness. Lastly, CREST
employs a second-order meta learning process to ensemble these classi-
fiers for optimized estimation of the risk scores. We evaluate the CREST
framework using publicly available critical care data collected for over 12
years from Beth Israel Deaconess Medical Center, Boston. Our results
demonstrate that CREST predicts the probability of a patient acquir-
ing CDI with an AUC of 0.76 five days prior to diagnosis. This value
increases to 0.80 and even 0.82 for prediction two days and one day prior
to diagnosis, respectively.
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1 Introduction

Motivation. Clostridium difficile infection (CDI) is a common hospital acquired
infection resulting in gastrointestinal illness with substantial impact on morbid-
ity and mortality. In 2011, nearly half a million CDI infections were identified in



the US resulting in 29,000 patient deaths [1, 11]. Despite well-known risk factors
and the availability of mature clinical practice guidelines [4], the infection and
mortality rates of CDI continue to rise with an estimated $1 billion annual price
tag [7]. Early detection of CDI has been shown to be significantly correlated with
a successful resolution of the infection within a few days, and is projected to save
$3.8 billion in medical costs over a period of 5 years [2]. In current practice, a di-
agnostic test is usually ordered as a confirmation of a highly-suspect case, only
after appearance of symptoms3. This points to a tremendous opportunity for
employing machine learning techniques to develop intelligent systems for early
detection of CDI to eradicate this medical crisis.

State-of-the-art. Our literature review shows that there have been some
initial efforts to apply machine learning techniques to develop risk score esti-
mation models for CDI. These efforts largely exploit two approaches. The first,
a moment-in-time approach, uses only the data from one single moment in pa-
tient’s stay. This moment can be the admission time [14] or the most recent
snapshot data at the time of risk estimation [6]. The second, an independent-
days approach, uses the complete hospital stay, but treats the days of a patient’s
stay as independent from each other [16, 17]. The complete physiological state of
the patient, changes in the physiological state, and clinical notes containing past
medical information have been left out of the risk prediction process.

Challenges. To fill this gap, the following challenges must be addressed:

Varying lengths of patient stays. Stay-lengths vary between patients,
complicating the application of learning algorithms. Thus, we must design a
fixed-length representation of time series patient-stay data. This requires tem-
poral summarization of data such that the most relevant information for the
classification task is preserved.

Incorporating clinical notes. Clinical notes from a patient’s EHR contain
vital information (e.g., co-morbidities and prior medications). These are often
taken in short-hand and largely abbreviated. Mining and analysis of clinical
notes is an open research problem, but some application of current techniques
is necessary to transform them into a format usable for machine learning algo-
rithms.

Combining multimodal data. EHR data is typically multimodal, includ-
ing text, static data and time series data, that require transformation and nor-
malization prior to use in machine learning. The choices made when transforming
the data may have significant impact on classification accuracy if key transfor-
mations are not appropriate for the domain.

Our Proposed CREST System. CREST: CDI Risk Estimation is a novel
framework that addresses these challenges and estimates the risk of a patient
contracting CDI. Figure 1 gives an overview of CREST. CREST extracts highly
predictive features capturing both time-invariant and time-variant aspects of
patient histories from multimodal input data (i.e., consisting of clinical and non-
clinical phenotypes, biomarkers from lab tests, time series vital signs, and clinical

3 The authors would like to thank Elizabeth Claypool, RN, Coordinator of Patient
Safety at U. Colorado Health for the valuable information she provided.



notes) while maintaining temporal characteristics. Feature selection methods are
applied to select the features with the highest predictive power. Feeding these
selected features into the classification pipeline, multiple models are fit ranging
from primary classifiers to meta-learners. Once trained, CREST continuously
generates daily risk scores to aid medical professionals by flagging at-risk patients
for improved prognoses.

Fig. 1. Overview of CREST framework

Contributions. In summary,
our contributions include:

1. Time-alignment of time
series data. We design two time-
alignment methods that solve the
varying length of patient’s stay
problem. This enables us to bring
a multiple-moments-in-time ap-
proach to the task of predicting
patient infections.

2. Multimodal feature com-
bination. To our knowledge,
CREST is the first work to com-
bine clinical notes and multivari-
ate time series data to perform
classification for CDI risk predic-
tion. We show that synopsis tem-
poral features from patient time-series data significantly improve classification
performance, while achieving interpretable results.

3. Early detection of the infection. We evaluate our system with publicly-
available critical-care data collected at the Beth Israel Deaconness Intensive
Care Unit in Boston, MA [8]. Our evaluation shows that CREST improves the
accuracy of predicting high-risk CDI patients by 0.22 one day before and 0.16 five
days before the actual diagnosis compared to risk estimated using only admission
time data.

2 Predictive Features of CREST

We categorize patient EHR information into three feature sets: time-invariant,
time-variant, and temporal synopsis. An overview of our feature extraction pro-
cess is depicted in Figure 2.

2.1 Time-Invariant and Time-Variant Properties of EHR Data

Time-Invariant Properties. These represent all data for a patient known at
the time of admission which does not change throughout the patient’s stay. A
number of known CDI risk factors are represented in this data (e.g. age, prior
antibiotic usage). To capture these, we extract a set of time-invariant features.
Demographic features are immutable patient features such as age, gender, and



ethnicity. Stay-specific features describe a patient’s admission such as admis-
sion location and insurance type, allowing inference on the patient’s condition.
These data could be different for the same patient upon readmission. Medical
history features model historical patient co-morbidities (e.g., diabetes, kidney
disease) and medications (e.g., antibiotics, proton-pump inhibitors) associated
with increased CDI risk. These are extracted from clinical notes (free-form text
files) using text mining. Using the Systematized Nomenclature of Medicine Clin-
ical Terms dictionary (SNOMED CT), synonyms for these diseases and medica-
tions are identified to facilitate extraction of said factors from a patient’s history.

Fig. 2. Feature extraction process

Time-Variant Properties. Through-
out the hospital stay of a patient,
many observations are recorded con-
tinuously such as laboratory results
and vital signs, resulting in a collec-
tion of time series. A data-driven ap-
proach is leveraged to model this data
as time-variant features. Additionally,
for each day of a patient’s stay, we
generate multiple binary features flag-
ging the use of antibiotics, H2 antag-
onists, and proton pump inhibitors,
all of which are known to risk factors
for CDI. Particularly high risk antibi-
otics, namely Cephalosporins, Fluo-
roquinolones, Macrolides, Penicillins,
Sulfonamides, and Tetracyclines [9],
are captured by another binary fea-
ture flagging the presence of high-risk antibiotics in a patient’s body. Using a
binary feature avoids one-hot encoding, a method known to dramatically in-
creases dimensionality and sparseness.

2.2 Two Strategies for Modeling Variable-Length Time-Series Data

Time-Alignment for Time-Series Clinical Data. A patient’s stay is recorded
as a series of clinical observations that is often characterized as irregularly spaced
time series. These measurements vary in the frequency at which they are taken
(once a day, multiple times a day, etc.). This variation is a function of (a) the
observation (a lab test can be taken once a day while a vital sign is measured
multiple times), (b) the severity of the patient’s condition (patients in more se-
vere conditions must be monitored more closely), and (c) the time of the day
(nurses are less likely to wake up patients in the middle of the night). To unify
this, we roll up all observations taken more than once a day into evenly sampled
averages at the granularity of one day. If there are no measurements for a day,
these are considered as missing values and are filled with the median value.



The total number of observations recorded per patient is a function of not
only the frequency of observation, but also the length of a patient’s stay. After
day-based aggregation, we produce a fixed-length feature representation by time-
aligning the variable-length feature vectors. This time-alignment can be done by
either using the same number of initial days since admission or the same number
of most recent days of each patient’s hospital stay. We empirically determine the
optimal time-alignment window by evaluating the AUC of the initial days and
the most recent days using Random Forests on only time-aligned data. Our
results show that AUC using the most recent days was much higher than using
the initial days of a patient’s stay. We validate our results using SVMs, as shown
in Figure 3. Based on these results, we conclude that when predicting CDI risk
on day p, the most recent 5 days of the patient stay (i.e. days p − 5 to p − 1)
capture the most critical information. This is consistent with and validated by
the incubation period of CDI (<7 days with a median of 3 days [5, 4]). In CREST,
we thus use only the most recent 5 days of each patient’s stay as our approach to
represent patient vital signs and lab/microbiology tests as continuous numerical
feature vectors.

(a) Initial days (b) Most recent days

Fig. 3. AUC results using initial and most-recent days of patient stays shows that using
the most recent 5 days contains the most information about the CDI risk.

Computing Temporal Synopsis Features. Time-variant features (e.g., tem-
perature), while capturing the state of the patient for each day of their stay,
falsely treat days to be independent from each other. Thus, they do not capture
the sequential trends over time inherent in these time series data. For example,
the presence or absence of recordings of a time-variant feature may be more
informative than the actual values (e.g., heart rate high alarm is only measured
when a patient has an alarmingly high heart rate). In some cases, the change in
an observation (e.g., increase in temperature) may be more important than the
actual observed values. To model these trends, in CREST, we introduce feature
computation functions, capturing the following temporal synopsis features:

– Trend-based features include statistics such as minimum, maximum, and
average values. In addition to an equal weighted average, linear and quadratic
weighted averages are computed, giving more weight to later days. The rel-
ative times of the first and last recordings and of minimum and maximum
recordings are also extracted to signal when in a patient’s hospital stay these
notable events occur.



– Fluctuation-based features capture the change characteristic of each
time-variant feature. Mean absolute differences, number of increasing and
decreasing recordings and the ratio of change in direction are examples of
trends we extract to capture these characteristics.

– Sparsity-based features model frequency of measurements and proportion
of missing values. For example, “heart rate high alarm” is recorded only if a
patients heart rate exceeds the normal threshold.

Figure 2 illustrates the time-variant feature blood pressure for a patient and
examples of trends we extract from this time series data.

3 Modeling Infection Risk In CREST

3.1 Robust Supervised Feature Selection

In CREST, each extracted feature set is fed into a rigorous feature selection
module to determine the features that are most relevant to CDI risk. We de-
note Sn×s, Dn×d, and Tn×t to be the time-invariant, time-variant, and temporal
feature matrices with n instances and s, d, and t features respectively. For a
compact representation, we use X to represent S, D, and T . The goal is to re-
duce Xn×p into a new feature matrix X ′n×k where X ′n×k ⊂ Xn×p. To achieve
this, we combine chi-squared feature selection, a supervised method that tests
how features depend on the label vector Y , with SVMs. Two issues must be
addressed when using this method, namely, determining the optimal cardinality
of features, and which features to use.

Percentile Selection. We first determine the cardinality of features for each
feature set. Using 10-fold cross validation over training data, we select the top K
percent of features for K = (5, 10, 15, . . . , 100) and record the average AUC value
by percentile for each of the three feature sets. We then select the percentiles
that perform the best.

Robustness Criterion. Next, we select as few features as possible while
ensuring adequate predictive power. We empirically select which features to use
by choosing a robustness criterion, γ, which we define as “the minimum number
of folds in which features must appear to be considered predictive”. Since we have
10 cross-validation folds, γ ∈ [1 : 10], where γ = 1 implies all features selected
for any folds are included in the final feature set (union) and γ = 10 implies all
features selected for every fold is included in the final feature set (intersection).

We apply these steps to feature matrices S, D, and T , resulting in reduced
feature matrices S′, D′, and T ′.

3.2 CREST Learning Methodology

We represent a patient’s CDI risk as the probability that the patient gets infected
with CDI. To compute this probability, we estimate a function f(X ′)→ Y using
the reduced feature matrix X ′ (representing S′, D′, or T ′) and the label vector
Y , consisting of binary diagnosis outcomes. The function outputs a vector of



predicted probabilities, Ŷ . In a hospital setting, CREST extracts a feature matrix
X ′ every day of a patient’s hospital stay. CREST then employs the classification
function on X ′ (see Figure 1 for this continuous process). This section describes
the process of estimating the function f , shown in Figure 4.

Fig. 4. Learning phase of the CREST Framework.

Type-specific Classification. We first train a set of type-specific classifiers
built on each of the feature matrices. The task is to estimate f(X ′)→ Y which
minimizes |Y − Ŷ |. We use SVMs, Random Forests, and Logistic Regression to
estimate f . Since imbalanced data is typical in this application domain, CREST
uses a modified SVM objective function that includes two cost parameters for
positive and negative classes. Thus, a higher misclassification cost is assigned to
the minority class. Equation 1 shows the modified SVM objective function we
used in CREST and Equation 2 shows how we choose the cost for positive and
negative classes.

minimize (
1

2
w · w + C+

l∑
i∈P

ξi + C−
l∑

i∈N
ξi)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi ξi ≥ 0, i = 1 . . . l.

(1)

C+ = C
l

|P|
, C− = C

l

|N |
(2)

where w is a vector of weights, P is the positive class, N is the negative class,
l is the number of instances, C is the cost, ξ is a set of slack variables, xi is ith

data instance, Φ is a kernel function, and b is the intercept.

A static classifier, trained on feature set S′ extracted from admission time
data, implies that only the information obtained on admission is necessary to
accurately predict risk. This constitutes our baseline as it represents the cur-
rent practice of measuring risk in hospitals and denotes risk on day 0. A dy-
namic classifier, trained on feature set D′, constitutes a multiple-moments-in-
time approach where the data from many moments in a patient’s stay are used
as features. This approach allows us to quantify the relationship between the
physiological state of the patient and their CDI risk. Finally, a temporal classi-
fier, trained using feature set T ′, quantifies the relationship between a patient’s



state-change and their risk, complementing the time-variant features.

Second-order Classification. Since the three type-specific classifiers capture
different aspects of a patient’s health and hospital stay, we combine them to
produce a single continuous prediction based on comprehensive information. We
hypothesize that this combination method, termed second-order classification,
will provide more predictive power. To evaluate this hypothesis, we merge the
predicted probability vectors from the type-specific classifiers into a new higher-
order feature set Xmeta = (ŶS , ŶD, ŶT ). With this new feature matrix, our task
becomes estimating a function f(Xmeta) → Y . Beyond naive methods such as
model averaging to assign weights to the results produced by the type-specific
classifiers, we also develop a stacking-based solution. We train meta learners
fusing SVMs with RBF and linear kernels, Random Forests, and Logistic Re-
gression on Xmeta to learn an integrated ensemble classifier. Henceforth, final
predictions are made by these new second-order classifier models.

4 Evaluation of CREST Framework

4.1 MIMIC-III ICU Dataset and Evaluation Settings

The MIMIC III Database [8], used to evaluate our CREST Framework, is a
publicly available critical care database collected from the Beth Israel Deaconess
Medical Center Intensive Care Unit (ICU) between 2001 and 2012. The database
consists of information collected from ∼45,000 unique patients and their ∼58,000
admissions. Each patient’s record consists of laboratory tests, medical proce-
dures, medications given, diagnoses, caregiver notes, etc.

Of the 58, 000 admissions in MIMIC, there are 1079 cases of CDI. Approx-
imately half of these patients were diagnosed either before or within the first
4 days of their admission. To ensure that CDI cases in our evaluation dataset
are contracted during the hospital stay, we exclude patients who test positive for
CDI within their first 5 days of hospitalization based on the incubation period of
CDI [5, 4]. For consistency between CDI and non-CDI patients, we also exclude
non-CDI patients whose hospital stay is less than 5 days. As the vast majority
of MIMIC consists of patients who do not contract CDI, we end up with an
unbalanced dataset (116:1). To overcome this, we randomly subsample from the
non-CDI patients to get a 2-to-1 proportion of non-CDI to CDI patients, leaving
us with 1328 patient records.

Next, we define the feature extraction window for patients. For CDI patients,
it starts on the day of admission and ends n days before the CDI diagnosis,
n ∈ {1, . . . , 5}. For non-CDI patients, there are a few alternatives for defining
this window. Prior research has used the discharge day as the end of the risk
period [6]. However, as the state of the patients can be expected to improve
nearing their discharge, this may lead to deceptive results [16]. Instead, we use
the halfway point of the non-CDI patient’s stay as the end of the risk period or
5 days (minimum length of stay), whichever is greater.



We then split these patients into training and testing subsets with a 70%-
30% ratio and maintain these subsets across all experiments. The training set is
further split and 5-fold cross-validation is applied to perform hyper-parameter
search. We use SVM with linear and RBF kernels, Random Forest and Logistic
Regression. All algorithms were implemented using Scikit-Learn in Python.

4.2 Classification Results

Fig. 5. Selection of robustness cri-
terion

Using our feature selection module, we find
the best cardinalities to be K = 20 for time-
invariant, K = 30 for time-variant, K =
90 for temporal feature sets with robustness-
criterion γ = 10 for all three feature sets. This
choice of γ is motivated by an almost unchang-
ing validation AUC over all potential γ values,
as shown in Figure 5. This shows that mostly
the same features are selected for each fold.
By choosing γ = 10, we can be certain that

only the features that are strongly related to the response variable are selected.

Table 1. Classification results acquired on the test
set.

AUC Precision Recall F-1

S
ta

ti
c

C
. SVM RBF 0.544 0.57 0.62 0.58

SVM Linear 0.627 0.76 0.46 0.38
Random F. 0.608 0.57 0.62 0.58
Logistic R. 0.627 0.6 0.64 0.59
Average 0.602 0.63 0.59 0.53

D
y
n

am
ic

C
.

SVM RBF 0.779 0.73 0.73 0.71
SVM Linear 0.756 0.71 0.72 0.69
Random F. 0.818 0.75 0.76 0.75
Logistic R. 0.758 0.72 0.73 0.71
Average 0.778 0.73 0.74 0.72

T
em

p
or

al
C

.

SVM RBF 0.815 0.76 0.77 0.76
SVM Linear 0.817 0.76 0.72 0.72
Random F. 0.832 0.77 0.77 0.77
Logistic R. 0.809 0.75 0.76 0.75
Average 0.818 0.76 0.76 0.75

Model Avg. 0.817 0.76 0.71 0.65

M
et

a
L

ea
rn

.

SVM RBF 0.838 0.76 0.76 0.75
SVM Linear 0.833 0.76 0.73 0.74
Random F. 0.815 0.74 0.75 0.74
Logistic R. 0.831 0.76 0.77 0.76
Average 0.829 0.76 0.75 0.75

We first run a set of exper-
iments with type-specific clas-
sifiers to determine the predic-
tive power of each type of fea-
ture class. We then experiment
with ensembles of the type-
specific classifiers in two ways:
(1) Equal-weighted model
averaging: We calculate equal
weighted averages of the proba-
bilities produced by each type-
specific classifier, (2) Meta-
learning: We train second or-
der meta learners using the
outputs of the type-specific
classifiers as the input of the
meta learners. Table 1 shows
the AUC, precision, recall and
F-1 scores for each classifica-
tion method.

Static classifiers constitute
our baseline approach. The
mean AUC of all static clas-
sifiers is 0.60, implying that a
risk score can be assigned to a
patient at the time of admis-
sion. Dynamic classifiers, which use time-variant features, achieve a much higher



AUC compared to the static classifiers. This shows that the physiological state
of a patient is correlated with the CDI outcome. Among the type-specific clas-
sifiers, the temporal classifiers consistently attain the highest AUC. This high-
lights that patient-state changes are strongly predictive of CDI risk. To the best
of our knowledge, ours is the first effort that uses this information to predict
CDI risk for patients. Between our two ensemble methods, meta-learners further
improve the prediction success over any of the type-specific classifiers, showing
that considering all features together is beneficial. The highest AUC is achieved
by meta-learners when an SVM with an RBF kernel is used. Figure 6 presents
the ROC curves for type-specific classifiers and the meta learners, which show
an increasing trend in diagnosis accuracy.

Fig. 6. ROC curves for Static, Dynamic, Temporal, and Meta Classifiers

4.3 Early Prediction of CDI

Fig. 7. AUC results of early pre-
diction experiments

The earlier an accurate prediction can be
made, the higher the likelihood that actions
can be taken to prevent contraction of CDI.
We evaluate the power of our model for
early prediction using the best CREST meta
learner. Unlike previous experiments, we now
train models using the data 1 to 5 days prior
to diagnosis. Results indicate that early warn-
ings can maintain high AUC values (Figure
7). In comparison with the baseline methods
where the mean AUC is 0.60, CREST improves the accuracy of predicting high-
risk CDI patients to 0.82 one day prior to diagnosis and to 0.76 five days prior
to diagnosis, an improvement of 0.22 and 0.16 over the baseline respectively.

5 Related Work

Feature Extraction from Time Series. One strategy to deal with clinical
time series in machine learning is to extract aggregated features. In healthcare,
much work has gone into extracting features from signals such as ECG [13] or
EEG [3, 10] using methods such as wavelet [18, 13] or Fourier [18] transforma-
tions. However, EHR time series have largely being ignored. Specially designing



feature extraction techniques for EHRs in our model, we demonstrate that pre-
diction accuracy increases using these features over models that do not account
for the temporal aspects of the data.

In-Hospital CDI Prediction. Recent work has begun to investigate predic-
tion models for CDI. [16, 17] ignore temporal dependencies in the data and reduce
this complex task to univariate time-series classification. [15] while combining
time-variant and time-invariant data, neglect the trends in patient records. [12]
uses ordered pairs of clinical events to make predictions, missing longer pat-
terns in data. In our work, we apply multivariate time series classification while
capturing temporal characteristics and long-term EHR patterns. SVMs [16, 17]
and Logistic Regression [12, 15, 6, 14] are popular tools for CDI risk prediction
models. We apply a variety of models including SVM, Random Forest, Logistic
Regression and ensembles of those to produce more comprehensive results.

6 Conclusion

CREST is the first system that stratifies a patient’s infection risk on a continu-
ous basis throughout their stay and is based on a novel feature extraction and
combination method. CREST has been validated for CDI risk using the MIMIC
Database. Our experimental results demonstrate that CREST can detect CDI
cases with an AUC score of up to 0.84 one day before and 0.76 five days before
the actual diagnosis. CDI is a highly contagious disease and early detection of
CDI not only greatly improves the prognosis for individual patients by enabling
timely precautions but also prevents the spread of the infection within the pa-
tient cohort. To our knowledge, this is the first work on multivariate time series
classification to predict the risk of CDI. We also demonstrate that our extracted
temporal synopsis features improve the AUC by 0.22 over the static classifiers
and 0.04 over the dynamic classifiers.

We are in discussion with UCHealth Northern Colorado as well as Brigham
and Womens Hospital, part of the Partners Healthcare System in Massachusetts,
for the potential deployment of a CREST dashboard integrated with their Elec-
tronic Health Records (EPIC). This deployment will be a 4 step process, with
the work presented in this paper being the first step. The CREST framework will
be independently validated against data from ICUs at these hospitals. Successful
validation of CREST will lead to Step 3 - clinical usability of the EPIC-CREST
dashboard with a particular ward where daily risk scores produced by CREST
will be utilized by the nurses to support diagnosis and early detection. Full scale
deployment will be largely dependent on the results of this clinical validation
and usability study.
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