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Abstract. Research on person re-identification (re-id) has attached much
attention in the machine learning field in recent years. With sufficient
labeled training data, supervised re-id algorithm can obtain promising
performance. However, producing labeled data for training supervised re-
id models is an extremely challenging and time-consuming task because
it requires every pair of images across no-overlapping camera views to
be labeled. Moreover, in the early stage of experiments, when labor re-
sources are limited, only a small number of data can be labeled. Thus,
it is essential to design an effective algorithm to select the most repre-
sentative samples. This is referred as early active learning or early stage
experimental design problem. The pairwise relationship plays a vital role
in the re-id problem, but most of the existing early active learning al-
gorithms fail to consider this relationship. To overcome this limitation,
we propose a novel and efficient early active learning algorithm with a
pairwise constraint for person re-identification in this paper. By intro-
ducing the pairwise constraint, the closeness of similar representations of
instances is enforced in active learning. This benefits the performance of
active learning for re-id. Extensive experimental results on four bench-
mark datasets confirm the superiority of the proposed algorithm.
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1 Introduction

The primary target of person re-identification (re-id) is to identify a person
from camera shots across pairs of non-overlapping camera views, and research
on this topic has attracted considerable attention in recent years [8,9,10,15,29].
In the field of computer vision, re-id can be formed as an image retrieval task.
Given a probe image of a person from one camera view, the difficulty is to
identify images of the same person from a gallery of images taken by other non-
overlapping camera views. Despite the encouraging results reported in previous
works, re-id remains a challenge in several respects. The accuracy of identification
is often degrades as a result of the uncontrollable and/or unpredictable variation
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of appearance changes across camera views, such as body pose, view angle,
occlusion and illumination conditions [7,20,23].

Supervised re-id methods can achieve promising results if there are sufficient
labeled training data. Unfortunately, the human labor necessary for labeling
training data is sometimes inadequate. This problem becomes extremely severe
in the re-id scenario, since labeling for re-id is difficult to achieve. Unlike other
recognition tasks which only requires each image to be labeled, re-id requires all
pairs of images across camera views to be labeled. It is a tough task even for
humans to identify the same person in different camera views among a potentially
huge number of imposters [9,20]. At the same time, pairwise labeled data is
required for each pair of camera views in the camera network in re-id, thus the
labeling cost will become prohibitively high numbers of cameras in today’s world.
For example, there might be more than over a hundred in one underground train
station [20].

To save labor costs, it is essential to design an effective algorithm that can se-
lect a subset of samples that are the most representative and/or informative for
training. Active learning is widely studied to solve this kind of sample selection
problem. As discussed in [18], active learning methods can be divided into two
categories. The first category of algorithms select the most informative samples
for labeling when there are already some labeled samples. They include uncer-
tainty sampling methods [11,6,1,22] query by committee methods [21,3]. Most
of these active learning methods prefer to select uncertainty data, or data that
is difficult to analyze. They thus require a certain number of labeled samples to
evaluate the uncertainty of the unlabeled data or sampling bias [18] will result.
It is therefore recommended that such methods are only applied in the mid-stage
of experiments when there are sufficient labeled data. For the purpose of dis-
tinguishing between the two categories, we refer to the first category of active
learning methods as traditional active learning. The second category of active
learning methods is considered for application in the early stage of experiments,
when there are limited resources for labeling data. In this case, there are no
labeled samples, thus labeling a small number of representative data is desirable
for training reliable supervised models. In the category of early active learning,
there are clustering-based methods [19,16] and transductive experimental design
methods [27]. These kinds of active learning algorithms are referred to as early
active learning or early stage experimental design [18]. We illustrate the proce-
dures of and example of the traditional active learning algorithm, QUIRE [6],
and our early active learning algorithm with pairwise constraint (abbreviated as
EALPC) in Fig. 1.

In the rest of this paper, we focus on the early active learning methods for
person re-identification applications. As mentioned, labeling re-id data is ex-
tremely labor-consuming and time-consuming. It is therefore highly desirable to
enhance the learning performance in re-id applications by early active learning.
Unfortunately, early active learning methods currently merely consider analyzing
representative samples with pairwise relationships. Therefore, directly applying
them for re-id may be not appropriate.
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To overcome the limitations described above, we propose a novel algorithm
for person re-identification, Early Active Learning with Pairwise Constraint,
abbreviated as EALPC. The main contributions of our work are as follows:

1. We propose a novel Early Active Learning with Pairwise Constraint algo-
rithm for person re-identification. To the best of our knowledge, this is the
first method considers to consider both (a) applying early active learning for
the re-id application, and (b) extending early active learning schema with
pairwise constraint.

2. We introduce the `2,1-norm to our objective function, which improves the
robustness of our methods and suppresses the effects of outliers.

3. We propose an efficient algorithm to optimize the proposed problem. Our
optimization algorithm also provides a closed form solution and guarantees
to reach the global optimum in the convergence.
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Fig. 1. Procedures of QUIRE [6] (upper) and our Early Active Learning with Pairwise
Constraint (EALPC) (lower). In QUIRE, pre-labeled samples Xl are used for the
uncertainty evaluation on the unlabeled samples Xu. Then, it selects a subset samples
V ⊂ Xu for labeling. At last, both Xu and V along with their labels are used for
supervised learning. In EALPC, unlabeled data X is analyzed without pre-labeled
data. Meanwhile, pairwise constraint Ψ is introduced to enhance the performance of
early active learning for re-id. More details are in Section. 2.
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2 The Proposed Framework

In this section, we first revisit the early active learning algorithm and then pro-
pose our early active learning with pairwise constraint for re-id.

Notation. Let the superscript T denote the transpose of a vector/matrix, 0 be
a vector/matrix with all zeros, I be an identity matrix. Let Tr(A) be the trace
of matrix A. Let ai and aj be the i-th column vector and j-th row vector of
matrix A respectively. Let 〈A,B〉 = Tr(ABT) be the inner product of A and
B, and ‖v‖p be the `p-norm of a vector v. Then, the Frobenius norm of an
arbitrary matrix A is defined as ‖A‖F =

√
〈A,A〉. The `2-norm of a vector a is

denoted as ‖a‖2 =
√

aTa and the `2,1-norm of matrix A ∈ Rn×m is denoted as
‖A‖2,1 =

∑n
i=1

√∑m
j=1 a

2
ij =

∑n
i=1 ‖ai‖2, where aij is the (i, j)-th element of

A and ai is the i-th row vector of A. For analytical consistency, the `2,0-norm
of a matrix A is denoted as the number of the nonzero rows of A. For any
convex function f(A), let ∂f(A)/∂A denote its subdifferential at A.We denote
G as a weighted graph with a vertex set X and an affinity matrix S ∈ Rn×n
constructed on X . The (unnormalized) Laplacian matrix associated with G is
defined as L = D − S, where D is a degree matrix with D(i, i) =

∑
j S(i, j).

2.1 Early Active Learning

We first revisit the early active learning algorithm. Given a set of unlabeled
samples X ∈ Rd×n, the task of active learning is to select a subset of m < n
most representative samples V ∈ Rd×m. Then, the selected samples are queried
labeling for supervised learning. The labeled subset of data is expected to max-
imize the potential performance of the supervised learning in the early stage of
experiment, when the available resource for labeling data is limited, i.e. only a
small number of data can be labeled for supervised learning. Generally, we can
define the optimization problem of early active learning as follows:

min
V,A

R(X,V,A) + αΩ(A), s.t. V ⊂ X, |V| = m. (1)

where V is a subset of X, A is a transformation matrix. In Eq. (1), the first term
R(·) is the reconstruction loss, the second term Ω(·) is the regularization term
and α > 0 is a leverage parameter.The major purpose of early active learning
is to select a subset V ⊂ X with size m < n that can best represent the whole
data X through the linear transformation matrix A. The selected samples are
therefore considered to be the most representative.

In [27], an early active learning via a Transduction Experimental Design
algorithm (TED) is proposed with the aim of finding the subset V ⊂ X and a
project matrix A that minimizes the least squared reconstruction error:

min
V,A

n∑
i=1

(‖xi −Vai‖2
2 + α‖ai‖2

2)

s.t. A = [a1, · · · ,an] ∈ Rm×n, V ⊂ X, |V| = m.

(2)
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where Vai is the representation item of xi. However, Eq. (2) is an NP-hard
problem to solve, thus an approximate solution by a sequential optimization
problem is proposed in [27].

2.2 Early Active Learning with Pairwise Constraint

In this work, we focus on early active learning in the person re-id problem. As
mentioned previously, person re-id is formed as an image retrieval task which
aims to re-identify the same person across non-overlapping camera views given
a probe image of the person. The analysis of pairwise relationships of images
in different camera views is therefore required. For this purpose, we introduce a
pairwise constraint to early active learning:

ΨV(A) =
n∑

i,j=1
‖Vai −Vaj‖2

2SV(i, j), (3)

where Vai is the representation item of xi and SV(i, j) is the (i, j)-th element
of similarity matrix S. It is the similarity between the i-th and the j-th repre-
sentations. In this work we define SV(i, j) as a Gaussian similarity:

SV(i, j)=
{

exp(−‖Vai−Vaj‖2

σ2 ), if Vai ∈ Nk(Vaj) and Vaj ∈ Nk(Vai)
0 , otherwise,

(4)

whereNk(x) denotes the set of k-nearest neighbors of x. We can then reformulate
the pairwise constraint in Eq. (3) by inducing a Laplacian matrix:

ΨV(A) =
n∑

i,j=1
‖Vai −Vaj‖2

2SV(i, j) = Tr((VA)LV(VA)T ), (5)

where LV = D − SV is the Laplacian matrix and D is the degree matrix with
each element Dii =

∑
j SV(i, j). As discussed in [9], minimizing the pairwise con-

straint will force the similar representations to be close to each other. Following
the assumption that visually similar images of a person have a high probability
of sharing the similar representation features in re-id [9], this will make early
active learning schema more suitable for re-id applications.

After introducing the pairwise constraint, the early active learning for person
re-identification can be formulated as:

min
V,A

R(X,V,A) + αΩ(A) + βΨV(A)

s.t. A = [a1, · · · ,an] ∈ Rm×n,V ⊂ X, |V| = m.
(6)

where α > 0 and β > 0 are leverage parameters of regularization terms. After
substituting Eq. (2) and Eq. (5) into Eq. (6) we obtain:

min
V,A

n∑
i=1

(‖xi −Vai‖2
2 + α‖ai‖2

2) + βTr((VA)LV(VA)T )

s.t. A = [a1, · · · ,an] ∈ Rm×n,V ⊂ X, |V| = m.

(7)
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Finding the optimal subset V ⊂ X in Eq. (7) is NP-hard. Inspired by [18], we
relax the problem to the following problem by introducing the `2,0-norm for
structure sparsity:

min
A

n∑
i=1
‖xi −Xai‖2

2 + α‖A‖2,0 + βTr((XA)LX(XA)T )

s.t. A = [a1, · · · ,an] ∈ Rn×n, ‖A‖2,0 = m.

(8)

However, the `2,0-norm makes Eq. (8) a non-convex problem. At the same time,
the least squared loss used in Eq. (8) is sensitive to the outliers [18], which makes
the algorithm not robust.

We note that in previous researches [17,18,26], the `2,1-norm is used instead of
the `2,0-norm. It is shown in [18] that the `2,1-norm is the minimum convex hull
of the `2,0-norm when row-sparsity is required. In other words, minimization of
‖A‖2,1 will achieve the same result as ‖A‖2,0 when A is row-sparse. As analyzed
in [18,30], the `2,1-norm can suppress the effect of outlying samples. We therefore
reformulate Eq. (8) as a relaxed convex optimization problem:

min
A

n∑
i=1
‖xi −Xai‖2,1 + α‖A‖2,1 + βTr((XA)LX(XA)T ). (9)

In Eq. (9), we adopt the `2,1-norm instead of both the least square reconstruction
loss term and the `2,0-norm structure sparsity term for robustness and suppres-
sion of outliers. By inducing the matrix formulation, Eq. (9) is rewritten as
follows:

min
A
‖(X−XA)T ‖2,1 + α‖A‖2,1 + βTr((XA)LX(XA)T ). (10)

After obtaining the optimal solution of A, the importances of samples can be
ranked by sorting the absolute row-sum values of A in the decreasing order. A
subset of the representative samples then can be selected corresponding to the
top m largest values and query labeling.

Kernelization The proposed algorithm can be extended to the kernel version
for non-linear high dimensional space. We define Φ : Rd → H as a mapping from
the Euclidian space to a Reproducing Kernel Hilbert Space (RKHS) as H. It
can be induced by a kernel function K(x,y) = Φ(x)TΦ(y). Then we can project
X to RKHS space as Φ(X) = [Φ(x1), · · · ,Φ(xn)]. The proposed problem thus
becomes:

min
A
‖(Φ(X)−Φ(X)A)T ‖2,1 + α‖A‖2,1 + βTr((Φ(X)A)LX(Φ(X)A)T ). (11)

We denote our Early Active Learning with Pairwise Constraint algorithm in
Eq. (10) as EALPC and the kenerlized version of our algorithm in Eq. (11) as
EALPC_K.
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3 Optimization

We provide an efficient algorithm for optimizing the proposed objective function.
Taking the derivative w.r.t. A in Eq. (10) and setting it to zero, we obtain 1:

XTXAP−XTXP + αQA + βXTXALX = 0, (12)

where P is a diagonal matrix and its i-th diagonal element is pii = 1
2‖xi−Xai‖2

.
Q is a diagonal matrix and its i-th diagonal element is qii = 1

2‖ai‖ 2
. Then by

setting the derivative of Eq. (12) w.r.t. ai to zero for each i, we obtain:

piiXTXai − piiXTxi + αQai + βXTXALi = 0, (13)

where Li is the i-th column vector of LX. It is sample to verify that ALi =
liiai +

∑
k 6=i lkiak, where lii and lki are the (i, i)-th and (k, i)-th element of

LX respectively and ak is the k-th column vector of A. Therefore, the optimal
solution a∗i can be calculated by the closed form solution:

a∗i = (piiXTX + αQ + βXTXlii)−1(piiXTxi − βXTX
∑
k 6=i

aklki). (14)

In Eq. (12), P and Q are dependent on A, thus they also need to be determined
in each iteration. We propose an iterative algorithm to solve this problem. The
detailed algorithm is described in Algorithm 1. In the next section, we will prove
that Algorithm 1 converges to the global optimal solution of Eq. (10).

4 Convergence Analysis

We first introduce a lemma proposed in [17]:

Lemma 1. For any arbitrary vector m and n there is

‖m‖2 −
‖m‖2

2
2‖n‖2

≤ ‖n‖2 −
‖n‖2

2
2‖n‖2

. (15)

Next, in the following theorem we prove the convergence of our algorithm:

Theorem 1. Algorithm 1 monotonically decreases the objective function value
of Eq. (10) in each iteration.
1 In practice, when xi − Xai = 0, pii can be regularized as pii = 1

2
√
‖xi−Xai‖2

2+η
.

Similarly when ai = 0, we set qii = 1
2
√
‖ai‖2

2+η
. η is a very small constant. It can

be verified that when η → 0 the problem with η reduces to the original problem in
Eq. (12).
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Algorithm 1: Algorithm for solving problem in Eq. (10)
Input: The data matrix X ∈ Rd×n, parameters α and β.

1 Initialize A ∈ Rn×n.
2 while not converge do
3 Compute the diagonal matrix P, where the i-th diagonal element is

pii = 1
2‖xi−Xai‖2

.
4 Compute the diagonal matrix Q, where the i-th diagonal element is

qii = 1
2‖ai‖ 2

.
5 Update A by each column ai as in Eq. (14):

a∗i = (piiXTX + αQ + βXTXlii)−1(piiXTxi − βXTX
∑
k 6=i

aklki).

6 end
Output: The matrix A ∈ Rn×n.

Proof. Suppose in an iteration the updated A is A+. According to Step 5 in
Algorithm 1 we know that:

A+ = arg min
F

f(F), (16)

where we denote the function

f(F) = Tr((X−XF)P(X−XF)T ) + αTr(FQFT ) + βTr((XF)LX(XF)T ).

Thus, in each iteration when updating A to A+ we have

Tr((X−XA+)P(X−XA+)T ) + αTr((A+)Q(A+)T ) + βTr((XA+)LX(XA+)T )

≤ Tr((X−XA)P(X−XA)T ) + αTr(AQAT ) + βTr((XA)LX(XA)T ).
(17)

According to the definition of P and Q, we thus obtain:
n∑
i=1

(
‖xi −Xa+

i ‖
2
2

2‖xi −Xai‖2
+ α
‖ai+‖2

2

2‖ai‖2

)
+ βTr((XA+)LX(XA+)T )

≤
n∑
i=1

(
‖xi −Xai‖2

2

2‖xi −Xai‖2
+ α

‖ai‖2
2

2‖ai‖2

)
+ βTr((XA)LX(XA)T ).

(18)

Meanwhile, according to Lemma 1, we can induce the following inequalities:
n∑
i=1

(
‖xi −Xa+

i ‖2 −
‖xi −Xa+

i ‖
2
2

2‖xi −Xai‖2

)
≤

n∑
i=1

(
‖xi −Xai‖2 −

‖xi −Xai‖2
2

2‖xi −Xai‖2

)
, (19)

and
n∑
i=1

(
‖ai+‖2 −

‖a+
i ‖

2
2

2‖ai‖2

)
≤

n∑
i=1

(
‖ai‖2 −

‖ai‖2
2

2‖ai‖2

)
. (20)



Early Active Learning with Pairwise Constraint for Person Re-id 9

After summing Eq. (19)and Eq. (20) in the both sides of Eq. (18), we conclude that:
n∑
i=1

(‖xi −Xa+
i ‖2 + α‖ai+‖2) + βTr((XA+)LX(XA+)T )

≤
n∑
i=1

(
‖xi −Xai‖2 + α‖ai‖2

)
+ βTr((XA)LX(XA)T ).

(21)

The above inequality indicates that the objective function value of Eq. (10) monoton-
ically decreases in Algorithm 1. �

Meanwhile, let ∂f(A)/∂A = 0 is equal to solving Eq. (12), thus in conver-
gence, A will satisfy Eq. (10). As Eq. (10) is a convex problem, A is the global
optimum solution to our problem. Overall, Algorithm 1 will converge to the
global optimum solution of Eq. (10).

5 Experimental Study

In the experiments, we compare our proposed EALPC algorithm with five state-
of-the-art and classic active learning algorithms. After determining and labeling
the most representative samples, we train the re-id models with these samples
using five popular re-id algorithms. All experiments are operated on four widely
referenced re-id benchmark datasets. We report the average performance of 10
trials of independent experiments on each dataset.

5.1 Datasets and Settings

Datasets We analyze performance of active learning for re-id on four widely
referred benchmark datasets for person re-identification.
1. VIPeR [4] The VIPeR dataset contains 1,264 images of 632 persons from two

non-overlapping camera views. Two images are taken for each person, each
from a different camera. Variations in viewpoint and illumination conditions
occur frequently in VIPeR.

2. PRID [5] The PRID dataset contains images of 385 individuals from two
distinct cameras. Camera B records 749 persons and Camera A records 385
persons, 200 of whom are same persons.

3. i-LID [30] The i-LID dataset records 119 individuals captured by three
different cameras in an airport terminal. It contains 476 images with large
occlusions caused by luggage and viewpoint changes.

4. CAVIAR [2] The CAVIAR dataset contains 72 individuals captured by two
cameras in a shopping mall. The number of the images is 1,220, with 10 to
20 images for each individual. The size of the images in the CAVIAR dataset
varies significantly from 39× 17 to 141× 72.

In the experiments, we use the recently proposed Local Maximal Occurrence
(LOMO) features for person image representation [12]. As in [14,20], all person
images are scaled to 128 × 48 pixels. We then use the default setting in [12] to
produce a 29,960 dimension feature for each image.
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Active Learning Algorithms We choose five active learning algorithms and
compare them with our proposed algorithm.
1. Random As a baseline algorithm, we randomly select samples and query

labeling.
2. K-means We use the K-means algorithm as another baseline algorithm as

in [18]. In each experiment, samples are ranked by their distances from the
K cluster centers in ascending order.

3. QUIRE [6] Active learning by Querying Informative and Representative
Examples is an algorithm which queries the most informative and represen-
tative examples for labeling using the min-max margin-based approach.

4. TED [27] Active learning via Transduction Experimental Design is an algo-
rithm that selects a subset of informative samples from a candidate dataset.
It formulates a regularized linear regression problem which minimizes recon-
struction error.

5. RRSS [18] Early active learning via Robust Representation and Structured
Sparsity is a early active learning algorithm. It uses the `2,1-norm to in-
troduce structured sparsity for sample selection and robustness. However,
RRSS does not consider the pairwise relations in re-id. We also introduce
the kernelized RRSS denoted as RRSS_K.

6. EALPC Our proposed early active learning with pairwise constraint algo-
rithm is denoted as EALPC. We also use a kernelized version of our algorithm
denoted as EALPC_K. For kernelization, we construct a Gaussian kernel
for the candidate dataset, i.e. K(xi, xj) = exp(−α‖xi − xj‖2).

To seek the optimal parameters (if any), we apply a grid search in a region
of {10−4, 10−3, · · · , 1, · · · , 103, 104} with a five-fold cross validation strategy to
determine the best parameters.

Re-identification Algorithms Five state-of-the-art supervised re-id algorithms
are chosen for the performance analysis of the proposed early active learning al-
gorithms on person re-id.
1. NFST [28] Null Foley-Sammon Transform space learning is a re-id algorithm

for learning a discriminative subspace where the training data points of each
of the classes are collapsed to a single point.

2. KCCA [14] Kernel Canonical Correlation Analysis algorithm seeks a com-
mon subspace between the proposed images extracted from disjoint cameras
and projects them into a new space.

3. XQDA [12] Cross-view Quadratic Discriminant Analysis learns a discrimi-
nant low dimensional subspace by cross-view quadratic discriminant analysis
for metric learning.

4. kLFDA [24] Kernelized Local Fisher Discriminant Classifier is a closed form
method that uses a kernelized method to handle large dimensional feature
vectors while maximizing a Fischer optimization criterion.

5. MFA [25] Marginal Fisher Analysis method is introduced for dimensionality
reduction by designing two graphs that characterize the intra-class compact-
ness and interclass separability.
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Settings We report the average performance of 10 independent trials. In each
trial, we divide each dataset into two equal-sized subsets as training and test
sets, with no overlapping of person identities. Following the setting in [20], we
divide the probe and gallery sets for re-id as follows: for datasets recording two
camera views, e.g. VIPeR and PRID, images of one view are randomly selected
for the probe sets, and images from the other view are chosen for the gallery
sets. For a multi-view dataset, e.g. i-LID, images of one view are randomly
selected as gallery sets and others are chosen as probe images. For the training
set, we apply active learning methods to select a subset of training samples and
query human labeling. The supervised re-id algorithms are then trained with the
labeled samples. For evaluation measurement, we evaluate the performance of
re-id by Cumulative Matching Characteristic (CMC) curve, which is the most
commonly used performance measure for person re-id algorithms [7,13,12]. CMC
calculates the probability that there exists a candidate image in the rank k
gallery set that appears to match the prob image. In the experimental study, we
also report the Rank One Matching Accuracy from CMC for simplicity.

Dataset CAVIAR VIPeR

Algorithm NFST KCCA XQDA kLFDA MFA NFST KCCA XQDA kLFDA MFA

Random 23.65 23.47 21.38 27.55 25.87 26.65 23.01 27.23 22.78 23.64
K-means 26.90 25.99 22.05 27.74 27.40 27.59 26.16 27.59 23.15 24.39
TED 29.78 28.70 29,42 27.94 28.08 27.45 28.53 28.43 25.75 26.09

QUIRE 30.66 30.87 31.56 28.18 26.16 28.39 27.43 28.54 26.25 25.13
RRSS 31.87 30.69 33.57 30.95 29.01 31.56 28.54 30.71 27.34 28.04

RRSS_K 31.69 33.03 35.56 31.41 31.13 31.61 28.73 31.46 28.51 29.40

EALPC 34.12 33.57 37.45 33.09 31.16 32.61 29.45 31.82 28.54 29.56
EALPC_K 35.00 35.20 38.75∗ 33.29 31.91 33.66 30.44 34.29∗ 29.18 30.03

Dataset PRID iLIDS

Algorithm NFST KCCA XQDA kLFDA MFA NFST KCCA XQDA kLFDA MFA

Random 24.49 25.47 24.00 23.50 20.00 25.96 23.40 25.00 23.35 25.00
K-means 26.16 27.54 27.01 24.70 21.20 27.02 23.94 27.00 25.57 25.20
TED 27.72 27.71 29.32 24.33 22.11 29.15 25.33 28.13 27.33 29.20

QUIRE 27.24 26.90 29.33 24.40 22.50 28.72 25.74 28.03 29.48 30.20
RRSS 29.21 28.44 30.00 25.09 23.97 28.11 27.66 30.82 30.08 30.55

RRSS_K 30.33 29.03 31.05 25.30 24.10 29.17 27.37 32.00 30.30 31.10

EALPC 32.22 30.63 31.03 25.90 25.60 29.26 27.66 32.34 30.43 31.60
EALPC_K 32.70 31.50 33.40∗ 26.06 25.70 31.19 28.72 34.00∗ 31.60 32.47

Table 1. Rank One Matching Accuracy(%) on four benchmarks. Percentage of selected
instances for labeling is 20% of all samples. Each column is an active learning algorithm
and each row is a re-id algorithm. The best result of each re-id algorithm is marked in
bold numbers. The best result of the algorithms overall is marked with an asterisk(∗).
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5.2 Experimental Result Analysis

Performance of Re-id We illustrate the performance of the active learning
algorithms for re-id application in Table 1. In Table 1, each row corresponds
to an active learning algorithm, and each column corresponds to a supervised
re-id method. On each benchmark dataset, we select 20% of training samples via
active learning algorithms and query labeling. The labeled subsets of samples
are then adopted by supervised re-id algorithms for training models. We report
the rank one matching accuracy in Table 1.

As shown in Table 1, we observe that: 1) All active learning algorithms
perform better than Random selection. This indicates that active learning al-
gorithms can select useful samples to improve the performance of re-id. 2) Our
algorithms consistently outperform the other active learning algorithms. The
table also confirms that our algorithms are better than the RRSS and TED
method by around 5% on rank one matching accuracy. RRSS and TED have
a similar optimization target to our algorithm but without pairwise constraint.
This implies that our method is much suitable for re-id applications as a result of
introducing the pairwise constraint. 3) The performance of the kernelized meth-

(a) CAVIAR (b) VIPeR (c) PRID (d) i-LID

Fig. 2. CMC Performance Comparison of Active Learning algorithms. XQDA is chosen
as the re-id algorithm. The percentage of selected samples is set to 10% of all samples.

ods is better than the performance of the linear methods with our algorithm.
This is consistent with the mathematical analysis in [18] that kernelization pro-
duces more discriminative representation by mapping data into high-dimensional
feature space. 4) The active learning algorithms with XQDA method for report
better rank one matching accuracy than those with LOMO features.

In Figure 2, we illustrate the performance via CMC curves of active learn-
ing methods with XQDA as the re-id algorithm. The percentage of the labeled
training sample is set to only 10% to present a more challenging task. We choose
XQDA as it returned the best re-id results in the previous experiments. As shown
in Fig. 2, we can observe that: 1) Our algorithms outperforms other algorithms
consistently on all four benchmark datasets. 2) Compared to the results in Ta-
ble 1, all algorithms suffer a decrease in the rank one matching accuracy when
the percentage of labeled samples is halved from 20% to 10%. However, our algo-
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rithm only decreases around by 5% on rank one matching accuracy whereas the
accuracy of others, e.g. Random and K-means, reduces approximately 10%. This
indicates that our algorithm is more robust. 3) The matching accuracy of our
algorithm is the only one to reach 90% with rank 15 on CAVIAR and VIPeR,
and the only one to reach 90% on rank 20 on PRID and i-LID. This implies that
our algorithm is more effective on re-id.

(a) i-LID (b) CAVIAR

(c) PRID (d) VIPeR

Fig. 3. Rank One Matching Accuracy(%) w.r.t. Number of Selected Instances. We use
XQDA as the re-id algorithm and train it with varying numbers of samples selected by
the active learning methods.

Effects on the Number of Selected Instances Figure 3 illustrates the per-
formance of re-id when the number of instances that selected by active learning
methods varies. As displayed in Fig. 3, we observe that: 1) Generally, rank one
matching accuracy of all re-id algorithms increases gradually when the number
of selected instances increases. 2) All active learning methods report better per-
formances than Random selection. This indicates that active learning algorithms
can improve the performance of re-id applications. 3) Our algorithm consistently
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performs better than the other active learning algorithms when the number of
selected instance increases. More specifically, for our algorithm, kernelized meth-
ods is better than the linear methods.

Convergence In Figure 4, we draw the objective value of the first 50 iterations
of our algorithm on benchmark datasets. In the experiments, we fix the leverage
parameters as α = 0.1 and β = 1 and set the percentage of selected samples to
20%. As shown in Fig. 4, the object values of our algorithm decrease dramatically
and barely change after the first five iterations on all the benchmark datasets.
This indicates that our algorithm converges very rapidly on all the datasets,
which is consistent with our theoretical analysis of convergence.
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Fig. 4. Convergence Analysis of EALPC on Benchmark Datasets. The parameters are
set as α = 0.1 and β = 1. The percentage of selected samples is 20%.

6 Conclusion

In this work, we have proposed a novel early active learning algorithm with a
pairwise constraint for person re-identification. The proposed method is designed
for the early stage of supervised re-id experiments when there are limited labor
resources for labeling data. Our algorithm introduces a pairwise constant for an-
alyzing graph structures specifically for re-identification. A closed form solution
is provided to efficiently weight and select the candidate samples. Extensive ex-
perimental studies on four benchmark datasets validate the effectiveness of the
proposed algorithm. The experimental results demonstrate that our methods
achieve encouraging performance against the state-of-the art algorithms in the
filed of early active learning for person re-identification. In future work, our algo-
rithm can be applied to other applications that consider the pairwise relatedness,
such as in social network analysis, etc.
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