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Abstract. Understanding the complex dynamics in the real-world such as in
multi-agent behaviors is a challenge in numerous engineering and scientific fields.
Spectral analysis using Koopman operators has been attracting attention as a way
of obtaining a global modal description of a nonlinear dynamical system, with-
out requiring explicit prior knowledge. However, when applying this to the com-
parison or classification of complex dynamics, it is necessary to incorporate the
Koopman spectra of the dynamics into an appropriate metric. One way of imple-
menting this is to design a kernel that reflects the dynamics via the spectra. In
this paper, we introduced Koopman spectral kernels to compare the complex dy-
namics by generalizing the Binet-Cauchy kernel to nonlinear dynamical systems
without specifying an underlying model. We applied this to strategic multiagent
sport plays wherein the dynamics can be classified, e.g., by the success or failure
of the shot. We mapped the latent dynamic characteristics of multiple attacker-
defender distances to the feature space using our kernels and then evaluated the
scorability of the play by using the features in different classification models.

1 Introduction

Groups of organisms competing and cooperating in nature are assumed to behave as
complex and nonlinear dynamical systems, which currently elude formulation [7, 9].
Understanding the complex dynamics of living organisms or artificial agents (and the
component parts) is a challenging research area in biology [5], physics [7], and ma-
chine learning. In the field of physics, decomposition or spectral methods that factorize
the dynamics into modes from the data are used such as proper orthogonal decompo-
sition (POD) [1, 25] or dynamic mode decomposition (DMD) [23, 24]. The problem of
learning dynamical systems in machine learning has been discussed such as in terms of
Bayesian approaches [10] and predictive state representation [19]. This topic is closely
related to the decomposition technique in physics, aiming to estimate a prediction model
by examining the obtained modes.

In this paper, we consider the following discrete-time nonlinear dynamical system:

xt+1 = f (xt) (1)
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where xi is a state vector on the state spaceM (i.e., x ∈ M ⊂ Rd ) and f is a state
transition function that assumes the dynamical system to be nonlinear. A recent devel-
opment is the use of Koopman spectral analysis with reproducing kernels (called kernel
DMD). This defines a mode that can yield direct information about the nonlinear latent
dynamics [16]. However, to compare or classify these complex dynamics, it is neces-
sary to incorporate their Koopman spectrum into a metric appropriate for representing
the similarity between the nonlinear dynamical systems.

Several works have applied approximation with a low-dimensional linear subspace
to represent this similarity [12, 30, 33]. One approach has used the Binet-Cauchy (Rie-
mannian) distance with a variety of kernels on a Grassman manifold [12], such as the
kernel principal angle [33], and the trace and determinant kernel [30], which were de-
signed for application in face recognition [33] and movie clustering [30]. The algorithm
essentially calculates the Binet-Cauchy distance between two subspaces in the feature
space, defined by the product of the canonical correlations. However, the main applica-
tions assumed a linear dynamical model [12,30,33] and thus generalization to nonlinear
dynamics without specifying an underlying model remains to be addressed. In this pa-
per, we map the latent dynamics to the feature space using the kernels, allowing binary
classification to be applied to real-world complex dynamical systems.

Organized human group tasks such as navigation [13] or ballgame teams [8] pro-
vide excellent examples of complex dynamics and pose challenges in machine learning
because of their switching and overlapping hierarchical subsystems [8], characterized
by recursive shared intentionality [28]. Measurement systems have been developed that
capture information regarding the position of a player in a ballgame, allowing analysis
of particular shots [11]; however, plays involving collaboration between several team-
mates have not yet been addressed. In games such as basketball or football, coaches
analyze team formations and players repeatedly practice moves that increase the prob-
ability of scoring (“scorability”). However, the selection of tactics is an ill-posed prob-
lem, and thus basically requires the implicit experience-based knowledge of the coach.
An algorithm is needed that clarifies scorable moves involving multiple players in the
team.

Previous research has classified team moves on a global scale by directly apply-
ing machine learning methods derived mainly from natural language processing. These
include recursive neural networks (RNN) using optical flow images of the trajectories
of all players [31] or the application of latent Dirichlet allocation (LDA) to the ar-
rangement of individual trajectories [22]. However, the contribution of team movement
to the success of a play remains unclear. Previously, we reported that three maximum
attacker-defender distances separately explained scorability [8], but the study addressed
only the outcome of a play, rather than its time evolution and the interactions that it
comprised. An algorithm is required that uses mapping to feature space to discrimi-
nate between successful and unsuccessful moves while accounting for these complex
factors. In this paper, we map the latent dynamic characteristics of multiple attacker-
defender distances [8] to the feature space using our kernels acquired by kernel DMD
and then evaluated scorability.

The rest of the paper is organized as follows. Section 2 briefly reviews the back-
ground of Koopman spectral kernels, while Section 3 discusses methods for computing
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them. We then extended this to empirical example of actual human locomotion in Sec-
tion 4. For application to multiple sporting agents, Section 5 reports our findings using
the data on actual basketball games. Our approach proved capable of capturing complex
team moves. Finally, Section 6 presents our discussion and conclusions.

2 Background

2.1 Koopman spectral analysis and dynamic mode decomposition

Spectral analysis (or decomposition) for analyzing dynamical systems is a popular ap-
proach aimed at extracting low-dimensional dynamics from the data. Common tech-
niques include global eigenmodes for linearized dynamics, discrete Fourier transforms,
and POD for nonlinear dynamics [25], as well as multiple variants of these techniques.
DMD has recently attracted particular attention in areas of physics such as fluid me-
chanics [23] and several engineering fields [2,26] because of its ability to define a mode
that can yield direct information even when applied to time series with nonlinear latent
dynamics [23,24]. However, the original DMD has numerical disadvantages, related to
the accuracy of the approximate expressions of the Koopman eigenfunctions derived
from the data. A number of variants have been proposed to address this shortcom-
ing, including exact DMD [29], optimized DMD [4], and baysian DMD [27]. Sparsity-
promoting DMD [14] provides a framework for the approximation of the Koopman
eigenfunctions with fewer bases. Extended DMD [32], which works on predetermined
kernel basis functions, has also been proposed. These Koopman spectral analyses have
been generalized to a reproducing kernel Hilbert space (RKHS) [16], an approach which
is called kernel DMD.

In Koopman spectral analysis, the Koopman operator K [18] is an infinite dimen-
sional linear operator acting on the scalar function gi :M→ C. That is, it maps gi to
the new function Kgi as follows:

(Kgi) (x) = (gi ◦ f) (x) , (2)

where K denotes the composition of gi with f . We can see that K acts linearly on the
function gi. The dynamics defined by f may be nonlinear. Since K is a linear operator,
it can generally perform eigenvalue decomposition:

Kϕj (x) = λjϕj (x) , (3)

where λj ∈ C is the jth eigenvalue (called the Koopman eigenvalue) and ϕj is the
corresponding eigenfunction (called the Koopman eigenfunction). We denote the con-
catenation of gj to g := [g1, . . . , gp]

T. If each gj lies within the space spanned by the
eigenfunction ϕj , we can expand the vector-valued g in terms of these eigenfunctions
as g(x) =

∑∞
j=1 ϕj(x)ψj , where ψj is a set of vector coefficients called Koopman

modes. By iterative application of Eq. (2) and Eq. (3), the following equation is ob-
tained:

(g ◦ f) (x) =

∞∑
j=1

λjϕj (x)ψj . (4)
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Therefore, λj characterizes the time evolution of the corresponding Koopman modeψj ,
i.e., the phase of λj determines its frequency and the magnitude determines the growth
rate of its dynamics.

DMD is a popular approach for estimating the approximations of λj and ψj from a
finite length observation data sequence y0, y1, . . . , yτ (∈ Rp), where yt := g(xt). Let
A = [y0, y1, . . . , yτ−1] and B = [y1, y2, . . . , yτ ]. Then, DMD basically approximates
those by calculating the eigendecomposition of the least-squares solution to

min
P ′∈Rp×p

(1/τ)
∑τ

t=0
‖yt+1 − P

′yt‖
2
, (5)

i.e., BA†(:= P )(•† is the pseudo-inverse of •). Let the j-th right and left eigenvec-
tor of P be ψj and κj , respectively, and assume that these are normalized so that
κ∗iψj = δij (δij is the Kronecker’s delta). Then, since any vector b ∈ Cp can be writ-
ten as b =

∑p
j=1 (κ∗i b)ψj , we have g(x) =

∑p
j=1 ϕj(x)ψj by applying it to g(x).

Therefore, by applying K to both sides, we have

(g ◦ f) (x) =

p∑
j=1

λjϕj (x)ψj , (6)

indicating a modal representation corresponding to Eq. (4) for the finite sum.

2.2 Kernels for comparing nonlinear dynamical systems

Selection of an appropriate representation of the data is a fundamental issue in pattern
recognition. The important point is to design the features (i.e., kernels) that reflect struc-
ture of the data. Time series data is challenging to design the features because of the dif-
ficulty in reflecting the data structure (including time length). Researchers have devel-
oped alternative kernel methods, including the use of graphs [15,17] , subspaces [12,33]
or trajectories [30]. In this paper, a kernel design applicable to dynamical systems was
required. Several methods were proposed, based on the subspace angle with kernel
methods such as for an auto-regressive moving average (ARMA) model [30]. These
methodologies were previously reviewed [12], from the viewpoint of the Riemannian
distance (or metric) on the Grassman manifold.

The Grassmann manifold G (m,D) is the set of m-dimensional linear subspaces of
RD. Formally, the Riemannian distance between two subspaces is the geodesic distance
on the Grassmann manifold. However, a more intuitive and computationally effcient
way of defining the distances uses the principal angles [20]. A previous review [12] cat-
egorized the various Riemannian distances into the projection and Binet-Cauchy dis-
tance. The former has been used in applications such as face recognition [3, 12], and
the latter has been applied in video clustering [30] and face recognition [33], and has
been generalized to (specific nonlinear) dynamical systems [30]. We then adopted the
Binet-Cauchy distance when comparing complex systems.

The Binet-Cauchy distances were basically obtained with the product of canonical
correlations using a variety of kernels [30]. However, the main applications assumed
linear dynamical model [12, 30, 33] such as ARMA model. Thus, it is necessary to
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generalize to nonlinear dynamics without any specific underlying model, into which
the Koopman spectrum of dynamics is incorporated. We called the kernels Koopman
spectral kernels.

3 Design of Koopman spectral kernels

3.1 DMD with reproducing kernel

Conceptually, DMD can be considered as producing a local approximation of the Koop-
man eigenfunctions using a set of linear monomials of the observables as the basis func-
tions. In practice, however, this is certainly not applicable to all systems (in particular,
beyond the region of validity for local linearization). Then, DMD with reproducing
kernels [16] approximates the Koopman eigenfunctions with richer basis functions.

LetH be the RKHS embedded with the dot product determined by a positive definite
kernel k. Additionally, let φ : M → H be a feature map, and an instance of φ with
respect to x is denoted by φx (i.e, φx := φ(x)). Then, we define the Koopman operator
KH : H → H in the RKHS by

KHφx = φx ◦ f . (7)

Note that almost of the theoretical claims in this study do not necessarily require φ to
be in the RKHS (it is sufficient to consider that φ stays within a Hilbert space), but this
assumption should perform the calculation in practice.

In this paper, we robustify the kernel DMD by projecting data onto the direction of
POD [4, 16, 29]. First, a centered Gram matrix is defined by Ḡ = HGH, where G is a
Gram matrix, H = I−1τ , I is a unit matrix, and 1τ is a τ -by-τ matrix, for which each
element takes the value 1/τ . The Gram matrix Gxx of the kernel k(yi,yj) is defined
at yi and yj (i and j dimensions) of the observation data matrixA. Similarly, the Gram
matrix Gxy of the kernel between A and B can be calculated. At this time, Gxx =
M∗τMτ and Gxy = M∗τM+ , whereM∗τ indicates the Hermitian transpose ofMτ .
Also,Mτ := [φx0

, .., φxτ−1
] andM+ := [φx1

, .., φxτ ], where φxi is considered as
a feature map of xi from the state spaceM to the RKHSH.

Here, suppose that the eigenvalues and eigenvectors can be truncated based on
eigenvalue magnitude. In other words, Ḡ ≈ B̄ḠB̄∗ where p (≤ τ) eigenvalues are
adopted. Then, a principal orthogonal direction in the feature space is given by

νj =MτHS̄
−1/2
jj βj , (8)

where βj is the jth row of B̄. Let U = [ν1, . . . , νj ] = MτHB̄ S̄−1/2. Since M+ =
KHMτ , the projection of KH onto the space spanned by νj is given as follows:

F̂ = UKHU = S̄−1/2B̄∗H(MτM+)HB̄ S̄−1/2. (9)

Note that Gxy = M∗τM+. Then, if we let F̂ = T̂−1Λ̂T̂ be the eigendecomposition
of F̂ , we obtain the centered DMD mode ϕ̄j = Ubj = MτHB̄ S̄−1/2bj , where bj is
the jth row of T̂−1. The diagonal matrix Λ̂ comprising the eigenvalues represents the
temporal evolution of the mode.
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3.2 Koopman spectral kernels

For calculating the similarity between the dynamical systems DSi and DSj , we
compute Koopman spectral kernels based on the idea of Binet-Cauchy kernels. The
Binet-Cauchy kernels are basically calculated from the traces of compound matrices
[30] defined as follows. Let M be a matrix in Rm×n. For q ≤ min(m,n), define
Inq = {i = i1, · · · , iq : 1 ≤ i1 < ... < iq ≤ n, ii ∈ N}, and likewise Imq . We denote

by Cq(M) the qth compound matrix, that is, the
(
m
q

)
×
(
n
q

)
matrix whose ele-

ments are the minors det((Mk,l)k 6=i,l 6=j ), where i ∈ I nq and j ∈ Imq are assumed
to be arranged in lexicographical order. In the unifying viewpoint [30], Binet-Cauchy
kernels is a general representation including various kernels [6,15,17,21], divided into
two strategies. One is the trace kernel obtained by setting q = 1 (i.e., C1(M) = M ),
which directly reflects the property of temporal evolution of the dynamical systems,
including diffusion kernel [17] and graph kernel [15]. Second is the determinant kernel
obtained by setting order q to be equal to the order of the dynamical systems n (i.e.,
Cn(M) = det(M)), which extracts coefficients of dynamical systems, including the
Martin distance [21] and the distance based on the subspace angle [6].

We expand the kernels to applying Koopman spectral analysis, which are called the
Koopman trace kernel and Koopman determinant kernel, respectively. Both kernels re-
flect the Koopman eigenvalue, the eigenfunction, and the mode (i.e., system trajectory
including the initial condition). However, richer information of system trajectory does
not necessarily increase expressiveness such as in classification with real-world data.
Therefore, we also expanded the kernel of principal angle [33] to applying Koopman
spectral analysis, which is called Koopman kernel of principal angle. The kernel prin-
cipal angle is theoretically a simple case of the trace kernel [30], which is defined as
the inner product of linear subspaces in this feature space. In this paper, for a simple
comparison, we compute the kernel with the inner product of the Koopman modes (i.e.
not the trajectory and independent of initial condition).

Koopman trace kernel and determinant kernel. First, for the trace kernel, we gen-
eralize the kernel assmuing the ARMA model [30], to nonlinear dynamical systems
without specifying an underlying model. The trace kernel of DSi and DSj can be the-
oretically defined as follows:

k (DSi,DSj) :=

∞∑
t=0

(
e−κtgi (xi,t)

T
Wgj (xj ,t)

)
, (10)

where gi and gj is the observation function and W is an arbitrary semidefinite matrix
(here, W = 1). Moreover, for converging the above equation, we suppose the expo-
nential discount µ(t) = e−κt(κ > 0). In this paper, noises in observation and latent
dynamics are not considered. Koopman trace kernel can be computed using the modal
representation given by the kernel DMD as follows:

k (DSi,DSj) = ϕi (xi,0)
T
∞∑
t=0

(
e−κtΛt

i

(
Ψi

TWΨj

)
Λt
j

)
ϕj (xj,0) , (11)
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where, Λi is a diagonal matrix consisting of Koopman eigenvalues, Ψi is the
Koopman mode, and ϕi is the Koopman eigenfunction (also for j). Although
the equation includes an infinite sum, we can efficiently compute the matrix
M :=

∑∞
t=0 (e−κtΛt

i (Ψ
T
i WΨj )Λ

t
j ) using the following Sylvester equation M =

e−κΛT
i MΛj + ΨT

i WΨj , where the Koopman mode Ψ = U∗HMτHU T̂−1 for i
and j. For creating a trace kernel independent of the initial conditions [30], we take
expectation over xi,0 and xj,0 in the trace kernel, yielding

k (DSi,DSj) = tr
(
Σϕi(xi,0),ϕj(xj,0)M

)
, (12)

where the initial Koopman eigenvalue ϕ(x0) = a∗(MτHU)∗Mτ,0 for i and j [16].
Here, a is the left eigenvector of F̂ and Mτ,0 is a vector indicating the first single
column of Mτ . Σϕi(xi,0),ϕj(xj,0) ∈ Cp×p is the covariance of all initial values
ϕn (x0) ∈ Cp×n of DSi for each index 1, ... p of eigenvalues (p was fixed for all
i). Similarly, the determinant kernel using the representation given by kernel DMD can
be computed:

k (DSi,DSj) = det
(
ΨiMΨj

T
)
, (13)

where M = e−κΛT
i MΛj + ϕi(xi,0)ϕj(xj,0)T. Determinant kernels independent of

the initial condition can only be computed for a single output system [30].

Koopman kernel of principal angle. The kernel of principal angle can be com-
puted using the Koopman modes given by kernel DMD. With respect to DSi, we
define the kernel of principal angles as the inner product of the Koopman modes
in the feature space: A∗A = T̂−1i U∗i HGxxiHUiT̂i. If the rank of F̂ is ri, A∗A is
a ri-order square matrix. Also for DSj , we create a similar matrix B∗B. Further-
more, we define the inner product of the linear subspaces between DSi and DSj as
A∗B = T̂−1i U∗i HGxxijHUj T̂j . Gxxij is a ni × nj matrix obtained by picking up the
upper-right part of the centered Gram matrix obtained by connecting Ai and Aj in se-
ries (ni and nj are the lengths of the time series). Then, using these matrices, we solve
the following generalized eigenvalue problem:(

0 (A∗B)
∗

A∗B 0

)
V = λij

(
B∗B 0

0 A∗A

)
V , (14)

where the size of λij is finally adjusted to rij = min(ri,rj) in descending order, and V
is a generalized eigenvector. The eigenvalue λij is the kernel of principal angle.

4 Embedding and classification of dynamics

A direct but important application of this analysis is the embedding and classification of
dynamics using extracted features. A set of Koopman spectra estimated from the analy-
sis can be used as the basis for a low-dimensional subspace representing the dynamics.
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Fig. 1: MDS embedding of (a) Koopman kernel of principal angle, (b) Koopman deter-
minant kernel, and (c) trace kernel of AR model. Blue, red, and green indicate jump,
run, and walk, respectively (x and triangle show the movements with turn and stop,
respectively).

The classification of dynamics can be performed using feature vectors determined by
the Koopman spectral kernels. We used the Gaussian kernel, with the kernel width set
as the median of the distances from a data matrix.

Before applying our approach to multiagent sports data, an experiment was
conducted using open-source real-world data. In this case, human locomotion data
were taken from the CMU Graphics Lab Motion Capture Database (available at
http://mocap.cs.cmu.edu). To verify the classification performance, we computed the
trace kernel of an auto-regressive (AR) model, representing a conventional linear dy-
namical model. For embedding of the distance matrix with our kernels, components
of the distance matrix between DSi and DSj in the feature space were obtained us-
ing dist(DSi,DSj) = k(Ai ,Ai) + k(Aj ,Aj ) − 2k(Ai ,Aj ). Figure 1a-c shows the
embedding of the sequences using multidimensional scaling (MDS) with the distance
matrix, computed with the Koopman kernel principal angle, Koopman determinant ker-
nel, and trace kernel of the AR model, respectively. Classification of performances into
jumping, running, and walking was computed using the k-nearest neighbor algorithm.
Error rates of the test data were small in this order: the Koopman kernel of principal an-
gle (0.261), Koopman determinant kernel (0.348), trace kernel of the AR model (0.522),
and Koopman trace kernel (0.601). Two Koopman spectral kernels performed better in
classification than the kernel of the linear dynamical model.

5 Application to multiagent sport plays

We used player-tracking data from two international basketball games in 2015 collected
by the STATS SportVU system. The total playing time was 80 min, and the total score of
the two teams was 276. Positional data comprised the xy position of every player and the
ball on the court, recorded at 25 frames per second. We eliminated transitions in attack
to automatically extract the time periods to be analyzed (called an attack-segment). We
defined an attack-segment as the period from all players on the attacking side court
entry to 1 s before a shot was made. We analyzed a total of 192 attack-segments, 77 of
which ended in a successful shot.
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Fig. 2: Diagrams and examples of attacker-defender distance. (a) Diagram of attacker-
defender distance with spatiotemporal correction. (b) Examples of four important dis-
tances. Orange, black, pink and light blue indicate the ball-mark, ball-help, pass-mark,
and pass-help distance, respectively. (c) Example of time series in the same four impor-
tant attacker-defender distances.

Next, we calculated effective attacker-defender distances to predict the success or
failure of the shot (details were given by [8]), which were temporally and spatially
corrected (Fig. 2a). Although all of the distances were 25 dimensions (five attackers
and defenders), we previously reduced to four dimensions [8]: (1) ball-mark distance,
(2) ball-help distance, (3) pass-mark distance, and (4) pass-help distance (Fig. 2b-c).
These distances were used to create seven input vector series: (i) a one-dimensional
distance (1), (ii) a two-dimensional distance comprising (1) and (2), and (iii-iv) three-
and four-dimensional (1-3,1-4) important distances, respectively. For verification, (v)
total 25 distances and (vi) 25-dimensional Euclidean distances without spatiotemporal
correction were calculated. We also used (vii) the xy position (total 20 dimensions) of
all the ten players.

When predicting the outcome of a team-attack movement, it is preferable to com-
pute the posterior probability rather than the outcome identification of the shot accuracy
itself. We used a naive Bayes classifier and a related vector machine (RVM) for classifi-
cation. Figure 3a shows the result of applying the naive Bayes classifier. The horizontal
axis shows the seven input vector series and the vertical axis the classification error. The
Koopman kernel principal angles derived by inputting four important distances demon-
strated minimum error of 35.9%. The result of applying the RVM is shown in Fig. 3b,
using the same axes. The performance of the naive Bayes classifier was superior to that
of the RVM. In both cases, the Koopman spectral kernels produced better classification
than the kernel of the linear dynamical model.

Figure 4a-c show embedding via MDS with the distance matrix of the Koopman
kernel of principal angle countered by frequencies of success and failure of the shot.
For example, the best case of the four important attacker-defender distances (Fig. 4a)
showed the expressiveness in scorability due to wide distribution across the plot. In
contrast, they were less widely distributed when only single distance (Fig. 4b) or the
xy coordinates of all players (Fig. 4c) were used.
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Fig. 4: MDS embedding of Koopman kernel of principal angle with three input vector
series. The series consisted of (a) four important distances, (b) single important dis-
tance, and (c) xy coordinates of all players. Red and blue indicates success and failure
of the shot, respectively.

6 Discussion and conclusion

The results of the two empirical examples showed that the best performances of the
Koopman spectral kernels (Koopman determinant kernel and kernel of principal angle)
are superior to that of the AR model assuming a linear dynamical model. Our proposed
kernels can be computed in a closed form; but practically, the values of the Koopman
determinant kernel were too large and the performance of the Koopman trace kernel
was no better than that of the others. In contrast, the Koopman kernel of principal angle
showed effective expressiveness only using Koopman modes.

When applied to multiagent sports data, the highest performance was provided by
the classifier using the four important distances. This vector series reflects four charac-
teristics: the scorability of a player in the current and future (i) shot, (ii) dribble, and (iii)
pass, and (iv) the scorability of a dribbler after the pass. The proposed kernel reflected
the time series of all interactions between players and was more effective for the clas-
sification than the kernel based on the information only on the shot itself. Well-trained
teams aim to create scoring opportunities by continuously selecting tactical passes and
dribbles or by improvising when no shooting opportunity is available.
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However, even the best classification was not high (64.1% accuracy) when applied
to real multiagent sports data. Two factors may have been neglected by our framework.
The first is the existence of local interactions between players, such as local competitive
and cooperative play by the attackers and defenders [8] when seen in higher spatial
resolution than was available in this study. The approach needs to reflect the hierarchical
characteristics of global dynamics and local dynamics. The second is the limitation of
the input vector series to the attacker-defender distances. To achieve more accurate
classifiers, not only the most important factor (i.e., distance) but also further hand-
made time-series input vector series (e.g., Cartesian coordinates or specific movement
parameters) should be used.

Overall, we developed Koopman spectral kernels that can be computed in closed
form and used to compare multiple nonlinear dynamical systems. In competitive sports,
coaches spend considerable amounts of time analyzing videos of their own team and the
opposing team. Application of a system such as the one presented here may save time
and create tactical plans that can currently be generated only by experienced coaches.
More generally, the algorithm can be applied to the analysis of the complex dynamics
of groups of living organisms or artificial agents, which currently elude formulation.

Acknowledgements We would like to thank Charlie Rohlf and the STATS team for
their help and support for this work. This work was supported by JSPS KAKENHI
Grant Numbers 16H01548.

References

1. Bonnet, J., Cole, D., Delville, J., Glauser, M., Ukeiley, L.: Stochastic estimation and proper
orthogonal decomposition: complementary techniques for identifying structure. Experiments
in Fluids 17(5), 307–314 (1994)

2. Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatial-temporal coher-
ent patterns in large-scale neural recordings using dynamic mode decomposition. Journal of
Neuroscience Methods 258, 1–15 (2016)

3. Chang, J.M., Beveridge, J.R., Draper, B.A., Kirby, M., Kley, H., Peterson, C.: Illumination
face spaces are idiosyncratic. In: Proc. of International Conference on Image Processing,
Computer Vision, & Pattern Recognition. vol. 2, pp. 390–396 (2006)

4. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary
condition, koopman, and fourier analyses. Journal of Nonlinear Science 22(6), 887–915
(2012)

5. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making
in animal groups on the move. Nature 433(7025), 513–516 (2005)

6. De Cock, K., De Moor, B.: Subspace angles between ARMA models. Systems & Control
Letters 46(4), 265–270 (2002)

7. Fodor, E., Nardini, C., Cates, M.E., Tailleur, J., Visco, P., van Wijland, F.: How far from
equilibrium is active matter? Physical Review Letters 117(3), 038103 (2016)

8. Fujii, K., Yokoyama, K., Koyama, T., Rikukawa, A., Yamada, H., Yamamoto, Y.: Resilient
help to switch and overlap hierarchical subsystems in a small human group. Scientific Re-
ports 6 (2016)

9. Fujii, K., Isaka, T., Kouzaki, M., Yamamoto, Y.: Mutual and asynchronous anticipation and
action in sports as globally competitive and locally coordinative dynamics. Scientific Reports
5 (2015)



12 K. Fujii et al.

10. Ghahramani, Z., Roweis, S.T.: Learning nonlinear dynamical systems using an EM algo-
rithm. Advances in neural information processing systems pp. 431–437 (1999)

11. Goldman, M., Rao, J.M.: Live by the three, die by the three? the price of risk in the NBA. In:
Proc. of MIT Sloan Sports Analytics Conference (2013)

12. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based
learning. In: Proc. of International Conference on Machine Learning. pp. 376–383 (2008)

13. Hutchins, E.: The technology of team navigation. Intellectual teamwork: Social and techno-
logical foundations of cooperative work 1, 191–220 (1990)
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