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Abstract. Understanding spatio-temporal activities in a city is a typical problem
of spatio-temporal data analysis. For this analysis, tensor factorization methods
have been widely applied for extracting a few essential patterns into latent fac-
tors. Non-negative Tensor Factorization (NTF) is popular because of its capabil-
ity of learning interpretable factors from non-negative data, simple computation
procedures, and dealing with missing observation. However, since existing NTF
methods are not fully aware of spatial and temporal dependencies, they often fall
short of learning latent factors where a large portion of missing observation ex-
ist in data. In this paper, we present a novel NTF method for extracting smooth
and flat latent factors by leveraging various kinds of spatial and temporal struc-
tures. Our method incorporates a unified structured regularizer into NTF that can
represent various kinds of auxiliary information, such as an order of timestamps,
a daily and weekly periodicity, distances between sensor locations, and areas of
locations. For the estimation of the factors for our model, we present a simple
and efficient optimization procedure based on the alternating direction method
of multipliers. In missing value interpolation experiments of traffic flow data and
bike-sharing system data, we demonstrate that our proposed method improved
interpolation performances from existing NTF, especially when a large portion of
missing values exists.

1 Introduction

Spatio-temporal data covering a wide area of a city have become available due to
the commoditization of sensor-monitoring systems and mobile-phone networks. These
monitoring systems observe various types of data, such as vehicle transportation counts
on a road network, bike-renting counts of a bike-sharing system, and the purchasing
records of shops around a city, where missing values often appear due to the failure
of sensor nodes, data transmission errors, and trouble with data recording systems. We
can find rich and bounteous information in such spatio-temporal data. However, it be-
comes difficult to grasp what spatio-temporal activities appeared in the data at a glance.
Therefore, understanding of such activities via pattern extractions is a typical problem
of spatio-temporal data analysis, in which the interpretability of the extracted patterns
is regarded as one of the most important property for analysis methods.



Tensor factorization methods have been widely applied to discover spatial and tem-
poral patterns from various kinds of spatio-temporal data [17]. These methods represent
spatio-temporal data as a higher-order dimensional array, called a tensor that is a gener-
alization of a matrix. For example, we can represent spatio-temporal data as a three-way
tensor whose first, second, and third modes correspond to sensor locations, timestamps
for 24 hours, and the observed days. We illustrated an example of a tensor for spatio-
temporal data analysis in Fig. 1. With this formulation, we can naturally incorporate
an assumption that daily or weekly periodicity can be found in data and similar spatial
patterns appear on different days. We can extract a few numbers of spatial, temporal,
and daily patterns into latent factors by decomposing the tensor. However, since most
existing tensor factorization methods do not consider the non-negativity of data where
observations only contain non-negative values, they often result in messy and hard to
interpret factors.
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Fig. 1: Example for a non-negative tensor factorization method on analysis of a traffic-flow data
set, where latent patterns for location, time, and day modes are extracted in the latent factor.

Unlike those tensor factorization methods, Non-negative Tensor Factorization (NTF) [8],
which leverages non-negativity, is effective for extracting interpretable patterns from the
non-negative data [18, 13]. This method has successively yielded interpretable factors
from various kinds of spatio-temporal data, such as location-based social network ser-
vices [25, 14], mobile phone GPS logs [10], log messages of network equipment [16],
and traffic records of road networks [32]. However, NTF was not applicable to the ex-
istence of missing values. To deal with missing values, NTF was recently extended to
learn the latent factors from a subset of elements in a tensor, called the non-negative
tensor completion [31, 15]. With this NTF, we can interpolate missing values in data by
learned latent factors. However, NTF methods for the missing value completion prob-
lem suffer from overfitting when just a few observations are available. Because they



ignore spatial and temporal contextual information such as the order of time stamps,
weekly periodicity, the distances between sensor locations and treats each feature of the
tensor independently.

To incorporate such contextual information, most matrix/tensor factorization meth-
ods have employed a graph Laplacian based regularizer for encouraging the latent
factors to be smooth with spatio-temporal dependencies [21]. The graph regularized
non-negative matrix factorization [6] is a variant of such schemes and has been widely
utilized in many applications, however, it does not consider scenarios where missing
values exist and analyzing higher-order dimensional arrays.

Another choice for representing such auxiliary information is structured regulariz-
ers [2] that have become popular in the fields of machine learning, signal processing,
and data mining [7, 28]. For example, the fused lasso [27], which is also known as the
total variation, approximates parameters by piecewise-constant values with the order of
parameters. Since its estimated parameters have the same estimated value, this is benefi-
cial for finding segments of parameters. In a pioneering work [29], the penalized matrix
decomposition was proposed to utilize the fused lasso as a regularizer on latent factors
and was applied to a gene data analysis problem. They presented latent factors easy to
find gene segments rather than existing matrix factorization methods incorporated the
lasso regularizer. However, this method and its subsequent works have only considered
the fused lasso without incorporating more general structured regularizer such as spatial
dependencies of sensors, and also ignored the non-negative properties and the existence
of missing values.

In this paper, we attempt to solve a problem of extracting latent factors from spatio-
temporal data where a lot of missing values exists. To tackle this problem, we propose
a novel NTF that learns factors by employing spatial and temporal auxiliary informa-
tion as regularizers. We utilize this information to represent phenomena often appear
in spatio-temporal data, such as counts of vehicles passed roads smoothly grow or de-
crease or take the same value along with space and time. To exploit such information,
we introduce a regularizer that consists of both a graph-based Laplacian regularizer
and structured regularizers that incorporate not only the order of features but also more
general graph and group based structures [3, 24]. With our regularizer, we can utilize
various kinds of auxiliary information into NTF including a daily and weekly period-
icity, distances between sensor locations, and areas of locations. Our proposed method
is highly robust to the presence of a large portion of missing values because it encour-
ages latent factors to be smooth and flat with spatial and temporal structures, where we
regard segments of parameters that take the same value as flat. To estimate the latent
factors for our proposed method, we present an efficient optimization procedure of the
alternating direction method of multipliers [4] that utilizes simple proximity operators
of the conjugate gradient method [21] and a parametric network flow algorithm [12].

We conducted missing value interpolation experiments with real-world traffic flow
data and compared the performance of our proposed method with existing NTF meth-
ods. We demonstrate that our proposed method improved the interpolation performances
from existing NTF methods. We also show that our extracted factors were interpretable
to detect change points. Because our factors have segments, we can easily find a bound-
ary of segments as a change point.



2 Non-negative Tensor Factorization

We denote a N -th way non-negative tensor as X ∈ RI1×···×IN≥0 , where In is the number
of features in the n-th mode. The n-th mode unfolding of a tensor X is denoted as
Xn. We use i = (i1, . . . , iN ) and D to represent an element and the whole set of the
elements in the tensor, respectively. A subset of the observed elements in the tensor is
denoted by Ω = {i | xi is observed ,∀i ∈ D}.

NTF decomposes the observed values of tensor X into K latent non-negative fac-
tors, where K � min(I1, . . . , IN ). The n-th mode factor matrix is denoted as A(n) ∈
RIn×K≥0 whose k-th column is factor vector a(n)

k ∈ RIn≥0. We denote a whole set of factor

vectors as A = {a(n)
k | ∀(n, k)}. An estimation for element xi is given by a sum of la-

tent factor vectors x̂i =
∑K
k=1 a

(1)
i1,k

a
(2)
i2,k
· · · a(n)

iN ,k
∈ X̂ . We denote the transpose opera-

tor as >, the Khatri-Rao product as�, and its series as�Nn=1A
(n) = A(1)�· · ·�A(N).

The empirical loss function for NTF can be defined as a sum of divergences that
indicates a discrepancy between xi and its estimation x̂i:

f(A) = DΩ(X‖X̂ ) +

N∑
n=1

K∑
k=1

g(n)(a
(n)
k ), (1)

where DΩ(X‖X̂ ) =
∑
i∈Ω d(xi‖x̂i). We d(p‖q) to denote a divergence between

scalars p and q, and g(n) to denote a penalty function for the n-th mode factor vec-
tor. Because loss function f is non-convex with respect to A, an NTF problem is to
obtain a local minimizer A∗ of the loss under a non-negative constraint:

A∗ = arg min
A

f(A) subject to a
(n)
k ≥ 0 ∀(n, k). (2)

The graph regularized non-negative matrix factorization method [6] employs a graph
Laplacian regularizer [22] to represent the smoothness in latent factors. An adjacency
matrix for the n-th mode features is denoted as W (n) ∈ RIn×In that represents a graph
whose nodes and capacities of edges correspond to the features of the n-th mode and the
similarity measures between the two features, respectively. The Laplacian matrix can
be denoted as L(n) = D(n) −W (n), where D(n) is a diagonal matrix whose elements
are the sums of each row of W (n). Then a graph Laplacian regularizer can be defined:

g(n)(a
(n)
k ) = a

(n)
k

>
L(n)a

(n)
k . (3)

This regularizer penalty function encourages smoothness because its formulation equals
putting a weighted quadratic term on the difference between the adjacency elements.

3 Proposed model

We introduce a unified structured regularizer to employ both smooth and piecewise-
constant properties with auxiliary structures:

g(n)(a
(n)
k ) =

3∑
m=1

λmg
(n)
m (a

(n)
k ) + g

(n)
≥0 (a

(n)
k ), (4)



where λ1, λ2 and λ3 are the hyperparameters for each regularizer. We employ a Gen-
eralized Fused Lasso (GFL) [5, 30] and a Higher-Order Fused Lasso (HOFL) [24] as
g

(n)
1 and g(n)

2 , respectively. g(n)
3 corresponds to the Laplacian regularizer for extracting

smooth patterns. We use an indicator function for the non-negative region:

g
(n)
≥0 (a

(n)
k ) =

{
0 ( if ai,k ≥ 0, ∀i)
+∞ (otherwise)

. (5)

The GFL penalty is defined:

g1(a
(n)
k ) =

In∑
j=1

In∑
j′=1

w
(n)
j,j′

∣∣∣a(n)
j,k − a

(n)
j′,k

∣∣∣ . (6)

The GFL prefers parameters with the same value if they are adjacent on the given graph,
such as distances between sensor locations and temporal lags between time stamps. The
HOFL encourages parameters in a given group to take identical values [24]. With this
regularizer, we can utilize auxiliary information, such as sensors placed in a specific
area that may output similar values and a group of time stamps when a specific train
leaves from a station. We denote the r-th group of features in the n-th mode as g(n)

r ⊆
Dn and a set of groups by G(n) = {g(n)

1 , · · · , g(n)
Rn
}, where Dn and Rn are a set of

elements in the n-th mode and the number of groups, respectively. The weights of each
element for the r-th group on the n-th mode are denoted by c(n)

r,m = c̄
(n)
r,m if m ∈ g(n)

r ,
and 0 otherwise, where c̄(n)

r,m > 0. Then a simplified HOFL penalty g2(a
(n)
k ) is given:

R∑
r=1

In∑
m=1

c
(n)
r,jm
|a(n)
jm,k
− ā(n)

r,jm,k
|+ θ(n)

r (a
(n)
sr,k
− a(n)

tr,k
), (7)

where θ
(n)
r > 0 is a hyperparameter that controls the consistency of the parame-

ters in a group. ā(n)
r,k is defined as ā(n)

r,m,k = a
(n)
sk,k

(if m ≥ sk), a
(n)
tk,k

(if m ≤
tk) and a

(n)
jm,k

(otherwise) for distinct indices j1, j2, . . . , jIn ∈ Dn that correspond

to a permutation that arranges the entries of a(n)
k in a non-increasing order. Threshold-

ing indices sr and tr are given as sk = min
{
m′ | ∑m′

m=1 c
(n)
r,jm

≥ θ
(n)
r

}
and tk =

min
{
m′ |∑In

m=m′ c
(n)
r,jm

< θ
(n)
r

}
.

For convenience, we denote ḡ(n)(a
(n)
k ) =

∑2
m=1 λmg

(n)
m (a

(n)
k ) + g

(n)
≥0 (a

(n)
k ). By

adopting our structured regularizers to the loss of NTF, we define the following mini-
mization problem for our purpose:

A∗ = arg min
A

DΩ(X‖X̂ ) +

N∑
n=1

K∑
k=1

ḡ(n)(a
(n)
k ) + λ3g

(n)
3 (a

(n)
k ). (8)

Note that when λ1 = λ2 = λ3 = 0, our method is reduced to an original NTF. When
λ2 = λ3 = 0, our method can be regarded as a tensor extension of the graph-regularized
non-negative matrix factorization. Our method includes those methods as special cases.



4 Parameter estimation

We present an efficient parameter estimation procedure for obtaining a local minimizer
of our proposed method. We employ a scaled formulation of the Alternating Direc-
tion Method of Multipliers (ADMM) for NTF [15]. The minimization problem for our
proposed method can be rewritten:

min
A,Z

DΩ(X‖Z) +

N∑
n=1

K∑
k=1

ḡ(n)(b
(n)
k ) + g

(n)
3 (a

(n)
k )

subject to Z = X̂ ,a(n)
k = b

(n)
k (∀n, k), (9)

where Z and b
(n)
k are auxiliary variables, and PΩ is a projection function that only

retains the divergence of the observed elements. To solve our problem efficiently with
keeping both constraints and separability, we define an augmented Lagrangian for our
problem:

Lρ(A,B,Z) = DΩ(X‖Z) +
ρ

2
‖Z − X̂ + U‖2F

N∑
n=1

K∑
k=1

ḡ(n)(b
(n)
k ) + g

(n)
3 (a

(n)
k ) +

ρ

2

∥∥a(n)
k − b

(n)
k + u

(n)
k

∥∥2

2
, (10)

where U and u
(n)
k are Lagrangian multipliers, and ρ is a step-size parameter, respec-

tively. We summarize the minimization procedure for our proposed method in Algo-
rithm 1. The minimization for ADMM can be efficiently calculated if a simple mini-
mization operator for each of each a

(n)
k and b

(n)
k exists.

The loss function with respect to A(n) and b
(n)
k contains the graph Laplacian regu-

larizer and the non-separable graph-based and group-based penalties, respectively. Thus
the main difficulty with our proposed method lies in the minimization of A(n) and b

(n)
k ,

whose minimization problems can be rewritten:

A(n) = arg min
A(n)

ρ

2
‖Z̄n −A(n)Vn

>‖22 +
ρ

2
‖A(n) − V̄n‖22 + λ3

K∑
k=1

g
(n)
3 (a

(n)
k ) (11)

b
(n)
k = arg min

b
(n)
k

ḡ(n)(b
(n)
k ) +

ρ

2
‖v̄(n)

k − b
(n)
k ‖22, (12)

where Z̄ = Z + U , Vn = �Nn=n′A
(n), V̄n = B(n) −U (n), and

¯
v

(n)
k = a

(n)
k + u

(n)
k .

We efficiently solve the minimization of Eq. (11) by using the fact that it corresponds to
the loss function of the graph regularized alternating least squares [21], which approxi-
mately runs in O(nnz(L(n))K) (nnz(·) is the number of non-zero elements).

The minimization problem in Eq. (12) corresponds to the calculation of the prox-
imity operator, which is defined as: proxγh(θ) = arg minθ h(θ) + 1

2γ ‖θ̂ − θ‖22. We
present a minimization procedure for Eq. (12) by leveraging the properties of the prox-
imity operator, and obtaining a minimizer for the sum of the non-negative indica-
tion function and other convex functions by the following property [26]: proxḡ(n) =



Algorithm 1: Alternative direction method of multiplier for our proposed non-
negative tensor factorization

Input : X , Ω, λ1, λ2, λ3,K,W
(n)

Output: set of factor matrices A
1 Initialize parameters
2 Sample A, B, and Z from random distributions
3 repeat
4 Alternatively update parameters;
5 Z ← argminZ DΩ(X‖Z) + (ρ/2)‖Z − X̂ + U‖2F
6 for n = 1 to N do
7 Update A(n) by solving Eq. (11)
8 for k = 1 to K do
9 Update b

(n)
k by solving Eq. (12)

10 end
11 U (n) ← U (n) + (A(n) −B(n))

12 end
13 U ← U + (X − X̂ )
14 until convergence;

prox
g
(n)
≥0

◦prox
λ1g

(n)
1 +λ2g

(n)
2

. Thus, if we have a minimizer for λ1g
(n)
1 +λ2g

(n)
2 , we can

attain the exact minimizer for ḡ(n) by setting negative parameters to zeros. A minimizer
for λ1g

(n)
1 +λ2g

(n)
2 can be simply calculated by employing a submodular function min-

imization procedure. Because the penalty functions of GFL and HOFL are the Lovász
extensions [19] of the graph-representable submodular functions [11], we can attain a
minimizer for the sum of functions λ1g

(n)
1 + λ2g

(n)
2 by an efficient parametric network

flow algorithm [7, 30, 24]. We show the details of our minimization procedure for this
function in the appendix.

5 Related Works

There has been a lot of articles in which NTF was applied to analyze spatio-temporal
data. Kimura et. al proposed a special NTF that decomposes a three-way tensor into
two-factor matrices and a three-mode tensor for extracting log messages related to net-
work failures [16]. Yang et. al proposed a combination of NTF without regularizers
and post-processing for modeling user activities [32]. Koh et. al proposed an NTF that
simultaneously decomposes multiple tensors to extract patterns appeared among dif-
ferent tensors[25]. NTF was used to extract spatio-temporal patterns from human-flow
data [10]. However, all of those methods did not employ regularizers into NTF and
their methods were not applicable to missing values. One exception is a paper of Sun
et. al [23], in which they proposed a probabilistic non-negative Tucker decomposition
for discovering interactions among factors. However, they did not incorporate the spa-
tial and temporal structures into regularizers. Han et. al proposed an extension of NTF
for predicting future observations [14]. However, they did not consider spatial struc-



tures. Our method can be applied to their framework to utilizing spatial and temporal
regularizers. The estimation procedures of them were based on the multiplicative up-
date rule and EM algorithm. Our proposed method can utilize graphs and groups of
spatial and temporal features to regularize parameters and also employ ADMM as an
estimation procedure.

6 Experiments

We conducted missing value completion problems with a traffic flow data set provided
by City Pulse [1] and two bike-sharing system data sets recorded in Washington D. C.5

and New York6 [1].
The traffic flow data consist of the numbers of cars that passed at 419 locations every

thirty minutes in Arhus City, Denmark. We picked 30 days from August 2nd to 31st
2014, and constructed three-way tensor X ∈ R48×30×441 whose modes corresponded
to 48 daily time points, 30 days, and 441 observation locations, respectively. From the
bike-sharing system data in Washington D.C. and New York, we employed 15 days
from April 1st to the 15th with 351 and 344 bike stations. We constructed three-way
tensors X ∈ R24×15×351 and X ∈ R24×15×44 whose values were the numbers of bikes
returned to the station in an hour. For the time mode, we utilized the adjacency of the
time points as a graph. For the day mode, we employed the adjacency of days and the
days of the week as a graph and groups. For the location mode, we used the inverse
of the Euclid distance of GPS locations and clusters attained by k-nearest neighbors
(k = 5, 10) for a graph and groups.

We exploited the Euclid distance as the divergence in experiments. We compared
our proposed method (Proposed 1) and our proposed method with only the graph Lapla-
cian regularizer (Proposed 2, λ1 = λ2 = 0) with NTF estimated by ADMM [15] (ADMM),
NTF with the graph Laplacian regularizer [6] estimated by a multiplicative update rule
considering missing values (Multi+Lap) [9], and NTF estimated by the multiplicative
update rule (Multi). We set the proportion of observations to p = {0.1, 0.01, 0.005, 0.001}.
By five-fold cross validation, we selected K and other hyperparameters from K =
{3, 5, 10} and {0.1, 1, 10}. We utilized the normalized RMSE (NRMSE) and the nor-
malized deviation (ND) as error measurements:

NRMSE =

√
(1/|Ω|)

∑
(p,t)∈Ω

(xp,t − x̂p,t)2/Q, (13)

ND = (1/|Ω|)
∑

(p,t)∈Ω

|xp,t − x̂p,t|/Q, (14)

here Q = (1/|Ω|)∑(p,t)∈Ω |xp,t|. We ran our experiments five times with randomly
selected different missing values.

The results are shown in Tables 1, 2, 3, 4, 5 , and 6, where the left and right val-
ues in a cell correspond to the average and the standard deviation of those values. We

5 https://www.capitalbikeshare.com
6 http://www.citibikenyc.com/



Table 1: NRAME for the traffic flow data of our proposed method (Proposed 1), our
proposed method with the graph Laplacian regularizer (Proposed 2), NTF estimated by
ADMM (ADMM), NTF with the graph Laplacian regularizer estimated by the multiplicative
update rule (Multi+Lap), and NTF (Multi)

p = 0.1 p = 0.01 p = 0.005 p = 0.001

Proposed 1 0.50 (0.00) 0.99 (0.03) 1.49 (0.03) 1.87 (0.01)
Proposed 2 0.51 (0.00) 1.12 (0.05) 1.49 (0.03) 1.89 (0.01)
ADMM 0.51 (0.00) 1.15 (0.03) 1.50 (0.02) 1.91 (0.00)
Multi+Lap 0.52 (0.00) 2.98 (1.86) 2.92 (1.00) 11.9 (11.7)
Multi 0.52 (0.00) 2.89 (2.22) 3.27 (1.80) 5.98 (6.24)

Table 2: NRAME for the bike-sharing record data of Washington D.C.

Method p = 0.1 p = 0.01 p = 0.005 p = 0.001

Proposed 1 1.67 (0.02) 2.14 (0.02) 2.21 (0.04) 2.43 (0.02)
Proposed 2 1.68 (0.01) 2.14 (0.05) 2.22 (0.05) 2.62 (0.08)
ADMM 1.68 (0.02) 2.21 (0.05) 2.32 (0.03) 2.47 (0.01)
Multi+Lap. 1.69 (0.01) 2.72 (0.22) 2.76 (0.24) 11.2 (4.62)
Multi 1.70 (0.01) 299.1 (405.7) 8.25 (4.87) 16.3 (3.13)

confirmed that our proposed methods showed the best performance in every setting.
Our proposed method was robust to the appearance of a large portion of missing val-
ues for every data set p = {0.01, 0.005, 0.001}. Our proposed method with both the
graph-based Laplacian and structured regularizer (Proposed 1) showed better or com-
petitive performance with our proposed method with the graph-based Laplacian regu-
larizer (Proposed 2). Furthermore, our proposed method with the graph-based Lapla-
cian regularizer (Proposed 2) always outperformed the same model estimated by the
multiplicative update rule (Multi+Lap). This result was caused by the benefits of si-
multaneously combining graph-based and structured regularizers with graph and group
structures. Thus our proposed model and parameter estimation procedure both con-
tributed to the improvements on missing value interpolations. The existing methods
resulted in poor performances with settings where a large portions of tensor elements
were missing.

To check the qualitative performances of the interpretability, we showed the ex-
tracted factors of proposed method (Proposed 1) and existing NTF with the Laplacian
regularizer (Multi+Lap) from traffic flow data in Figs. 2, 3, 4, 5, 6, and 7, where p = 0.1.
The degree of freedom (DoF) in Figures corresponded the number of segments in a
factor matrix. Thanks to the Laplacian and structured regularizers, proposed method
extracted the interpretable latent factors in which both smooth and flat properties ap-
peared, whose DoF of parameters in factor matrices were extremely less than that of
NTF with the Laplacian regularizer. Our factors with low DoF were easy to find change
points. For example, the blue factor had a change at 3 am and gradually grew until 6 am.
Then it took the constant values until 3 pm in Fig. 2. This factor also has the same value
from day 2 to day 6 and from day 8 to day 13. Thus, we can easily understand that the
blue factor in Figs. 2 and 4 corresponded to activity that occurred in weekday during



Table 3: NRAME for the bike-sharing record data of New York

Method p = 0.1 p = 0.01 p = 0.005 p = 0.001

Proposed 1 0.98 (0.00) 1.28 (0.02) 1.42 (0.01) 1.62 (0.01)
Proposed 2 0.98 (0.00) 1.30 (0.03) 1.44 (0.01) 1.63 (0.01)
ADMM 0.98 (0.00) 1.34 (0.02) 1.49 (0.01) 1.65 (0.01)
Multi+Lap 1.00 (0.02) 27.2 (41.3) 5.68 (3.22) 1.86 (0.17)
Multi 1.00 (0.02) 53.7 (22.0) 26.6 (29.4) 3.04 (1.03)

Table 4: ND for the traffic flow data of our proposed method (Proposed 1), our proposed method
with the graph Laplacian regularizer (Proposed 2), NTF estimated by ADMM (ADMM), NTF
with the graph Laplacian regularizer estimated by the multiplicative update rule (Multi+Lap),
and NTF (Multi)

Method p = 0.1 p = 0.01 p = 0.005 p = 0.001

Proposed 1 0.27 (0.00) 0.46 (0.01) 0.70 (0.01) 0.92 (0.01)
Proposed 2 0.28 (0.00) 0.51 (0.02) 0.71 (0.02) 0.94 (0.00)
ADMM 0.28 (0.00) 0.53 (0.01) 0.73 (0.01) 0.94 (0.00)
Multi+Lap 0.28 (0.00) 0.61 (0.08) 0.78 (0.02) 1.19 (0.16)
Multi 0.28 (0.00) 0.60 (0.08) 0.81 (0.04) 1.18 (0.24)

daylight with a spatial pattern in Fig. 6. However, NMF with the Laplacian regularizer
resulted in messy factors. We also showed that of bike-sharing data in Washington D.C.
in Figs. 8, 9, 10, 11, 12, and 13. Our proposed method also extracted more interpretable
patterns than existing NTF. For example, the yellow factor of ours in Fig. 8 had a change
point at 8 am. After it had taken a peak at 12 am, it kept the same value from 1 pm to
5 pm. Then its value gradually decreased to zero. The yellow factor in Fig. 10 had the
same high value on day 2, 3, 9, and 10. Thus, we confirmed that this factor indicated a
weekend afternoon activity with a spatial pattern in Fig. 12. Similar interpretations can
be obtained from other factors of ours.

7 Conclusion

In this paper, we proposed a structurally regularized non-negative tensor factorization
that incorporated both the graph Laplacian and the structured regularizers on latent fac-
tors. For the structured regularizer, we employed the generalized fused lasso and the
higher-order fused lasso to represent both graph-based and group-based information
in time and space. We introduced a flexible and efficient parameter estimation method
based on the alternating direction method of multipliers and showed a proximity op-
erator for our unified structured regularizer. With experiments on a missing value im-
putation problem of three data sets, we confirmed that our proposed method showed
the best quantitative performance and successfully extracted more interpretable latent
factors than the existing non-negative tensor factorization methods.
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Table 5: ND for the bike-sharing record data of Washington D.C.

Method p = 0.1 p = 0.01 p = 0.005 p = 0.001

Proposed 1 0.81 (0.00) 0.91 (0.01) 1.04 (0.02) 1.04 (0.08)
Proposed 2 0.81 (0.01) 0.91 (0.00) 1.04 (0.02) 1.05 (0.09)
ADMM 0.81 (0.01) 0.91 (0.01) 1.10 (0.01) 1.20 (0.01)
Multi+Lap 0.81 (0.00) 1.19 (0.05) 1.51 (0.15) 1.99 (0.54)
Multi 0.81 (0.00) 9.70 (6.91) 1.44 (0.10) 2.56 (0.31)

Table 6: ND for the bike-sharing record data of New York

Method p = 0.1 p = 0.01 p = 0.005 p = 0.001

Proposed 1 0.60 (0.00) 0.72 (0.01) 0.81 (0.01) 0.93 (0.01)
Proposed 2 0.60 (0.00) 0.73 (0.01) 0.82 (0.01) 0.93 (0.01)
ADMM 0.60 (0.00) 0.74 (0.01) 0.84 (0.01) 0.94 (0.01)
Multi+Lap 0.60 (0.00) 2.13 (1.48) 1.53 (0.21) 1.05 (0.05)
Multi 0.60 (0.00) 4.48 (0.79) 2.51 (0.95) 1.21 (0.07)

A Appendix

Although the issue in Eq. (12) is a general problem containing the previous problems [5,
30, 24] as special cases, we can solve it in a similar manner as these works. We first
briefly introduce the parametric optimization method for a non-decreasing set function.
Let α ∈ R≥0, and define set function lα(S) = l(S) − α1(S) (∀S ⊂ V ), where
1(S) =

∑
i∈S 1. Then if l is a non-decreasing submodular function, then there exists a

set of r + 1 (≤ |V |) subsets: S∗ = {S0 ⊂ S1 ⊂ · · · ⊂ Sr}, where Sj ⊂ V , S0 = ∅,
and Sr = V , and r + 1 subintervals Qr of α: Q0 = [0, α0), Q1 = [α1, α2), · · · , Qr =
[αr,∞), such that, for each j ∈ {0, 1, · · · , r}, Sj is the unique maximal minimizer of
hα(S),∀α ∈ Qj . A minimizer of Eq. (12) t∗ = (t∗1, t

∗
2, · · · , t∗|V |) is then determined:

t∗i =
f(Sj+1)−f(Sj)
1(Sj+1\Sj) , ∀i ∈ (Sj+1 \Sj), j = (1, · · · , r). We introduce two lemmas [20]

to see that l is a non-decreasing submodular function.

Lemma 1 (Lemma). For any η ∈ R and submodular function h, t∗ is an optimal solu-
tion to mint∈B(l) ‖t‖22 if and only if t∗−η1 is an optimal solution to mint∈B(l)+η1 ‖t‖22.

Lemma 2 (Lemma). Set η = maxi=1,··· ,|V |{0, l(V \ {i})− l(V )}, and then l+ η1 is
a non-decreasing submodular function.

With Lemma 2, we solve

min
S⊂V

f(S)− ẑ(S) + (η − α)1(S), (15)

and apply Lemma 1 to obtain a solution to the original problem. With fixed α, we can
efficiently attain the optimal of Eq. (15) because this is a minimum cut problem.

Proposition 1. The problem in Eq. (15) is equivalent to a minimum s/t-cut problem.
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Proof. Each component in f is graph-representable. The graph is obtained due to the
additive property of the graph-representative submodular functions, where the groups
of parameters are represented with hyper nodes uk1 , u

k
0 that corresponds to each group,

and the capacities of the edges between hyper and ordinal nodes vi ∈ V .

The attained graph includes both of the GFL and HOFL graphs as spacial cases. As
a consequence, we can attain a sequence of solutions for all α of the parametric s/t
minimun-cut problem (15) using an efficient parametric-flow algorithm, such as [12],
that runs in O(|V ′||E′| log(|V ′|2/|E′|)) as the worst case and |V ′| and |E′| are the
number of nodes and edges of the graph.

References

1. Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. Citybench: A configurable bench-
mark to evaluate rsp engines using smart city datasets. In ISWC, pages 374–389, 2015.

2. Francis R Bach. Structured sparsity-inducing norms through submodular functions. In Proc.
of NIPS, pages 118–126, 2010.

3. Alvaro Barbero and Suvrit Sra. Fast newton-type methods for total variation regularization.
In Proc. of ICML, pages 313–320, 2011.



Fig. 6: A spatial pattern of the blue factor of
Proposed 1 on the traffic flow data

Fig. 7: A spatial pattern of the blue factor of
Multi+Lap on the traffic flow data

4. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed op-
timization and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends in Machine Learning, 3(1):1–122, 2011.

5. Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE transactions on pattern analysis and
machine intelligence, 26(9):1124–1137, 2004.

6. Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang. Graph regularized nonnegative
matrix factorization for data representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(8):1548–1560, 2011.
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Fig. 14: Minimum s/t-cut problem of Problem (15). Given graphG = (V ′, E′) for our proposed
method, capacities of edges c(v′i, v

′
j) are defined as: c(s, uk) = θk, c(vi, vj) = wi,j , c(uk, vi) =
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sink, and parameters nodes, respectively.


