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Abstract. Accurate electricity load forecasting is of crucial importance for
power system operation and smart grid energy management. Different factors,
such as weather conditions, lagged values, and day types may affect electricity
load consumption. We propose to use multiple kernel learning (MKL) for elec-
tricity load forecasting, as it provides more flexibilities than traditional kernel
methods. Computation time is an important issue for short-term load forecasting,
especially for energy scheduling demand. However, conventional MKL methods
usually lead to complicated optimization problems. Another practical aspect of
this application is that there may be very few data available to train a reliable
forecasting model for a new building, while at the same time we may have prior
knowledge learned from other buildings. In this paper, we propose a boosting
based framework for MKL regression to deal with the aforementioned issues for
short-term load forecasting. In particular, we first adopt boosting to learn an en-
semble of multiple kernel regressors, and then extend this framework to the con-
text of transfer learning. Experimental results on residential data sets show the
effectiveness of the proposed algorithms.

Keywords: Electricity load forecasting, boosting, multiple kernel learning,
transfer learning

1 Introduction

Electricity load forecasting is very important for the economic operation and security
of a power system. The accuracy of electricity load forecasting directly influences the
control and planning of power system operation. It is estimated that a 1% increase of
forecasting error would bring in a 10 million pounds increase in operating cost per year
(in 1984) for the UK power system [4]. Experts believe that this effect could become
even stronger, due to the emergence of highly uncertain energy sources, such as so-
lar and wind energy generation. Depending on the lead time horizon, electricity load
forecasting ranges from short-term forecasting (minutes or hours ahead) to long-term
forecasting (years ahead) [13]. With increasingly competitive markets and demand re-
sponse energy management [15], short-term load forecasting is becoming more and
more important [25]. In this paper, therefore, we will focus on tackling this problem.
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Electricity load forecasting is a very difficult task since the load is influenced by
many uncertain factors. Various methods have been proposed for electricity load fore-
casting including statistical methods, time series analysis, and machine learning algo-
rithms [21]. Some recent work uses multiple kernels to build prediction models for
electricity load forecasting. For example, in [1], Gaussian kernels with different param-
eters are applied to learn peak power consumption. In [8], different types of kernels
are used for different features and a multi-task learning algorithm is proposed and ap-
plied on low level load consumption data to improve the aggregated load forecasting
accuracy. However, all of the existing methods rely on a fixed set of coefficients for
the kernels (i.e., simply set to 1), implicitly assuming that all the kernels are equally
important for forecasting, which is suboptimal in real world applications.

Multiple kernel learning (MKL) [2], which learns both the kernels and their combi-
nation weights for different kernels, could be tailored to this problem. Through MKL,
different kernels could have different weights according to their influence on the out-
puts. However, learning with multiple kernels usually involves a complicated convex
optimization problem, which limits their application on large scale problems. Although
some progresses have been made in improving the efficiency of the learning algorithms,
most of them only focus on classification tasks [26, 23]. On the other hand, electricity
load forecasting is a regression problem and the computation time is an important issue.

Another practical issue for load forecasting is the lack of data to build a reliable
forecasting model. For example, consider the case of a set of newly built houses (target
domain) for which we want to predict the load consumption. We may not have enough
data to build a prediction model for these new houses, while we have a large amount of
data or knowledge from other houses (source domain). The challenge here is to perform
transfer learning [18], which relies on the assumption is that there are some common
structures or factors that can be shared across the domains. The objective of transfer
learning for load forecasting is to improve the forecasting performance by discovering
shared knowledge and leveraging it for electricity load prediction for target buildings.

In this paper, we address both challenges within a novel boosting-based MKL
framework. In particular, we first propose the boosting based multiple kernel regression
(BMKR) algorithm to improve the computational efficiency of MKL. Furthermore, we
extend BMKR to the context of transfer learning, and propose two variants of BMKR:
kernel-level boosting based transfer multiple kernel regression (K-BTMKR) and model-
level gradient boosting based transfer multiple kernel regression (M-BTMKR). Our
contribution, from an algorithmic perspective, is two-fold: We propose a boosting based
learning framework 1. to learn regression models with multiple kernels efficiently, and
2. to leverage the MKL models learned from other domains. On the application side,
this work introduces the use of transfer learning for the load forecasting problem, which
opens up potential future work avenues.

2 Background

2.1 Multiple Kernel Regression

Let S = {(xn, yn), n = 1, . . . , N} ∈ Rd × R be the data set with N samples, K =
{km : Rd × Rd → R,m = 1, . . . ,M} be M kernel functions. The objective of MKL
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is to learn a prediction model, which is a linear combination of M kernels, by solving
the following optimization problem [11]:

min
η∈∆

min
F∈HK

1

2
||F ||2K + C

N∑
n=1

`(F (xn), yn), (1)

where ∆ = {η ∈ R+|
∑M
m=1 ηm = 1} is a set of weights, HK is the reproducing

kernel Hilbert space (RKHS) induced by the kernel K(x, xn) =
∑M
m=1 ηmkm(x, xn)

and `(F (x), y) is a loss function. In this paper we use the squared loss `(F (x), y) =
1
2 (F (x)− y)

2 for the regression problem. The solution of Eq. 1 is of the form1

F (x) =

N∑
n=1

αnK(x, xn), (2)

where the coefficients {αn} and {ηm} are learned from samples.
Compared with single kernel approaches, MKL algorithms can provide better learn-

ing capability and alleviate the burden of designing specific kernels to handle diverse
multivariate data.

2.2 Gradient Boosting and ε-Boosting

Gradient boosting [10, 16] is an ensemble learning framework which combines multiple
hypotheses by performing gradient descent in function space. More specifically, the
model learned by gradient boosting can be expressed as:

F (x) =

T∑
t=1

ρtf t(x), (3)

where T is the number of total boosting iterations, and the t-th base learner f t is selected
such that the distance between f t and the negative gradient of the loss function at F =
F t−1 is minimized:

f t = argmin
f

N∑
n=1

(
f(xn)− rtn

)2
, (4)

where rtn = −
[
∂`(F (xn),yn)

∂F

]
F=F t−1

, and ρt is the step size which can either be fixed

or chosen by line search. Plugging in the squared loss we have rtn = yn − F t−1(xn).
In other words, gradient boosting with squared loss essentially fits the residual at each
iteration.

Let F = {f1, . . . , fJ} be a set of candidate functions, where J = |F| is the size
of the function space, and f : Rd → RJ , f(x) = [f1(x), . . . , fJ(x)]

> be the mapping
defined by F . Gradient boosting with squared loss usually proceeds in a greedy way:

1 We ignore the bias term for simplicity of analysis, but in practice, the regression function can
accomodate both the kernel functions and the bias term.
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the step size is simply set ρt = 1 for all iterations. On the other hand, if the step
size ρt is set to some small constant ε > 0, it can be shown that under the monotonicity
condition, this example of gradient boosting algorithm, referred to as ε-boosting in [20],
essentially solves an `1-regularized learning problem [12]:

min
||β||1≤µ

N∑
n=1

1

N
`
(
β>f(xn), yn

)
, (5)

where β ∈ RJ is the coefficient vector, and µ is the regularization parameter, such that
εT ≤ µ. In other words, ε-boosting implicitly controls the regularization via the number
of iterations T rather than µ.

2.3 Transfer Learning from Multiple Sources

Let ST = {(xn, yn), n = 1, . . . , N} be the data set from the target do-
main, and {S1, . . . ,SS} be the data sets from S source domains, where Ss =
{(xsn, ysn), n = 1, . . . , Ns} are the samples of the s-th source. Let {F1, . . . , FS} be the
prediction models learned from S source domains. In this work, the s-th model Fs is
trained by some MKL algorithm (e.g., BMKR), and is of the form:

Fs =

M∑
m=1

ηsmh
s
m(x) =

M∑
m=1

ηsm

Ns∑
n=1

αsnkm(x, xsn). (6)

The objective of transfer learning is to build a model F that has a good general-
ization ability in the target domain using the data set ST (which is typically small)
and knowledge learned from sources {S1, . . . ,SS}. In this work, we assume that such
knowledge has been embedded into {F1, . . . , FS}, and therefore the problem becomes
to explore the model structures that can be transferred to the target domain from var-
ious source domains. This type of learning approach is also referred to as parameter
transfer [18].

3 Methods

3.1 Boosting based Multiple Kernel Learning Regression

The idea of BMKR is to learn an ensemble model with multiple kernel regressors using
the gradient boosting framework. The starting point of our method is similar to multiple
kernel boosting (MKBoost) [23], which adapts AdaBoost [9] for multiple kernel clas-
sification. We extend this idea to a more general framework of gradient boosting [10,
16], which allows different loss functions for different types of learning problems. In
this paper, we focus on the regression problem and use the squared loss.

At the t-th boosting iteration, for each kernel km,m = 1, . . . ,M , we first train a
kernel regression model such as support vector regression (SVR) by fitting the current
residuals, and obtain a solution of the form:

f tm(x) =

N∑
n=1

αt,nkm(x, xn). (7)
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Algorithm 1 BMKR: Boosting based Multiple Kernel Regression
Input: Data set S, kernel functions K, number of iterations T
1: Initialize residual: r1n = yi, ∀n ∈ {1, . . . , N}, and F = 0
2: for t = 1, ..., T do
3: for m = 1, ...,M do
4: Sample N ′ data points from S
5: Train a kernel regression model f tm with km by fitting the residuals of the selected N ′

samples
6: Compute the loss: etm = 1

2

∑N
n=1

(
f tm(xn)− rtn

)2
7: end for
8: Select the regression model with the smallest fitting error: f t = argminftm etm
9: Add f t to the ensemble: F ← F + εf t

10: Update residuals: rt+1
n = yn − F (xn), ∀n ∈ {1, 2, ...N}

11: end for
Output: the final multiple kernel function F (x)

Then we choose fromM candidates, the regression model with the smallest fitting error

f t = argmin
ft
m,m∈{1,...,M}

etm, (8)

where etm = 1
2

∑N
n=1 (f

t
m(xn)− rtn)

2, and add it to the ensemble F . The final hypoth-
esis of BMKR is expressed as in Eq. 3.

The pseudo-code of BMKR is shown in Algorithm 1. For gradient boosting with
squared loss, the step size ρt is not strictly necessary [3], and we can either simply set
it to 1, or a fixed small value ε as suggested by ε-boosting. Note that at each boosting
iteration, instead of fitting all N samples, we can select only N ′ samples for training
a SVR model, as suggested in [23], which can substantially reduce the computational
complexity of each iteration as N ′ � N .

3.2 Boosting based Transfer Regression

As explained in Section 1, as we typically have very few data in the target domain,
and therefore the model can easily overfit, especially if we train a complicated MKL
model, even with the boosting approach. To deal with this issue, we can implicitly reg-
ularize the candidate functions at each boosting iteration by constraining the learning
process within the function space spanned by the kernel functions trained on the source
domains, rather than training the model in the function space spanned by arbitrary ker-
nels. On the other hand, however, the underlying assumption of this approach is that at
least one source domain is closely related to the target domain and therefore the kernel
functions learned from the source domains can be reused. If this assumption does not
hold, negative transfer could hurt the prediction performance. To avoid this situation,
we also keep a MKL model which is trained only on the target domain. Consequently,
the challenge becomes how to balance the knowledge embedded in the model learned
from the source domains and the data fitting in the target domain.
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Algorithm 2 BTMKR: Boosting based Transfer Multiple Kernel Regression
Input: Data set ST from the target domain, number of iterations T , regularization parameter λ,
multiple kernel functions {F1, . . . , FS} learned from S source domains, where each Fs is given
by Eq. 6.
1: Initialize residual: r1n = yn,∀n ∈ {1, . . . , N}, and F = 0
2: for t = 1, ..., T do
3: Compute the regression model f∗ and h∗ (line 8 – 21)

4: Select the base learner: f t =

{
f∗, if

∑N
n=1 r

t
nf
∗(xn)

λ
>
∑N
n=1 r

t
nh
∗(xn)

h∗, otherwise.
5: Add f t to the ensemble: F ← F + εf t

6: Update residuals: rt+1
n = yn − F (xn), ∀n ∈ {1, 2, ...N}

7: end for
Output: the final multiple kernel function F (x)

K-BTMKR
8: for s = 1, ..., S do
9: for m = 1, ...,M do

10: Fit the current current residuals: γts,m =
∑N

n=1 r
t
nh

s
m(xn)∑N

n=1 h
s
m(xn)2

11: Compute the loss of hsm: ets,m = 1
2

∑N
n=1

(
γts,mh

s
m(xn)− rtn

)2
12: end for
13: end for
14: Fit the residuals by training a kernel regressor: f∗ = argminf∈F

1
2

∑N
n=1

(
f(xn)− rtn

)
15: Return the regression models: f∗ and h∗ = argmin{hs

m} e
t
s,m

M-BTMKR
16: for s = 1, ..., S do
17: Fit the current current residuals: γts =

∑N
n=1 r

t
nFs(xn)∑N

n=1 Fs(xn)2

18: Compute the loss of Fs: ets = 1
2

∑N
n=1

(
γtsFs(xn)− rtn

)2
19: end for
20: Fit the residuals by training a kernel regressor: f∗ = argminf∈F

1
2

∑N
n=1

(
f(xn)− rtn

)
21: Return the regression models: f∗ and h∗ = argmin{Fs} e

t
s

To address this issue in a principled manner, we follow the idea of ε-boosting [20,
6] and propose the BTMKR algorithm, which is aimed towards transfer learning. There
are two levels of transferring the knowledge of models: kernel-level transfer and model-
level transfer, denoted by K-BTMKR and M-BTMKR respectively. At each iteration,
K-BTMKR selects a single kernel function from S ×M candidate kernels, while M-
BTMKR selects a multiple kernel model from S domains. Therefore, K-BTMKR has
higher “resolution” and more flexibility, at the price of higher risk of overfitting, as the
dimension of its search space is M higher than that of M-BTMKR.

Kernel-Level Transfer (K-BTMKR) Let H = {h11, . . . , h1M , . . . , hS1 , . . . , hSM} be
the set of MS candidate kernel functions learned from S source domains, and F =
{f1, . . . , fJ} be the set of J candidate kernel functions from the target domain. Note
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that as the kernel functions from the source domains are fixed, the size of H is finite,
while the size of the function space of the target domain is infinite, since the weights
learned by SVR can be arbitrary (i.e., Eq. 7). For simplicity of analysis, we assume J is
also finite. Given the mapping h : Rd → RMS , h(x) = [h11(x), . . . , h

S
M ]> defined by

H and the mapping f defined by F , we formulate the transfer learning problem as:

min
βS ,βT

L (βS , βT ) s.t. ||βS ||1 + λ||βT ||1 ≤ µ, (9)

whereL(βS , βT ) ,
∑N
n=1 `(β

>
S h(xn)+β

>
T f(xn), yn), βS , [β1

1 , . . . , β
S
M ]> ∈ RMS ,

βT , [β1, . . . , βJ ]
> ∈ RJ are the coefficient vectors for the source domains and the

target domain respectively, and λ is a parameter that controls how much we penalize βT
against βS . Intuitively, if the data from target domain is limited, we should set λ ≥ 1 to
favor the model learned from the source domains, in order to avoid overfitting.

Following the idea of ε-boosting [12, 20], Eq. 9 can be solved by slowly increas-
ing the value of µ by ε, from 0 to a desired value. More specifically, let g(x) =

[h(x)>, f(x)>]>, and β =
[
∆β>S , ∆β

>
T
]>

. At the t-th boosting iteration, the coef-
ficient vector β is updated to β +∆β by solving the following optimization problem:

min
∆β
L (β +∆β) s.t. ||∆βS ||1 + λ||∆βT ||1 ≤ ε (10)

As ε is very small, the objective function of Eq. 10 can be expanded by first-order Taylor
expansion, which gives

L (β +∆β) ≈ L (β) +∇L (β)>∆β, (11)

where

∂L
∂βj

=

N∑
n=1

−rtngj(xn), ∀j ∈ {1, . . . ,MS + J}. (12)

By changing the coefficients β̃T ← λβT , it can be shown that minimizing Eq. 10 can
be (approximately) solved by

∆βj =

{
ε, if j = argmaxj

∑N
n=1 r

t
ngj(xn)

λj

0, otherwise
, (13)

where λj = 1,∀j ∈ {1, . . . ,MS}, and λj = λ, otherwise. In practice, as the size of
function space of target domain is infinite, the candidate functions are actually com-
puted by fitting the current residuals, as shown in Algorithm 2.

Model-Level Transfer (M-BTMKR) The derivation of M-BTMKR is similar to that
of K-BTMKR, and therefore is omitted here.
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Fig. 1: Load data for four winter days
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Fig. 2: Load data for three houses

3.3 Computational Complexity

The computational complexity of BMKR, as analyzed in [23], is O(TMξ(N)), where
ξ(N) is the computational complexity of training a single SVR with N samples.
Standard learning approaches formulate SVR as a quadratic programming (QP) prob-
lem and therefore ξ(N) is O(N3). Lower complexity (e.g., about O(N2)) can be
achieved by using other solvers (e.g., LIBSVM [5]). More important, BMKR can adopt
stochastic learning approach, as suggested in [23], which only selects N ′ samples
for training a SVR at each boosting iteration. This approach yields a complexity of
O(TM(N + ξ(N ′))), which makes the algorithm tractable for large-scale problems
by choosing N ′ � N . The computational complexity of the BTMKR algorithms is
O(TM(SN + ξ(N))). Note that in the context of transfer learning, we use all the
samples from the target domain, as the size of data set is usually small.

4 Experiments and Simulation Results

In this section, we evaluate the proposed algorithms on the problem of short-term
electricity load forecasting for residential houses. Several factors including day types,
weather conditions, and the lagged load consumption itself may affect the load pro-
file of a given house. In this paper, we use three kinds of features for load forecasting:
lagged load consumption, i.e., electricity consumed in the last three hours, temperature
in the last three hours, and weekday/weekend information.

4.1 Data Description

The historical temperature data are obtained from [14], and the residential house load
consumption data are provided by the US Energy department [17]. The data set includes
hourly residential house load consumption data for 24 locations in New York state in
2012. For each location, it provides data for three types of houses, based on the house
size: low, base, and high. Fig. 1 shows load consumption for a base type house for four
consecutive winter days. We can see that the load consumption starts to decrease from
8 am and increases very quickly from 4 pm. Fig. 2 shows the load consumption for
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Table 1: MAPE (%) performance (mean ± std dev) for high load consumption houses
Method Spring Summer Fall Winter Average
Linear 10.42 ± 0.10 7.78 ± 0.13 9.21 ± 0.22 5.81 ± 0.13 8.30 ± 0.15
SVR 10.95 ± 0.21 7.73 ± 0.11 8.82 ± 0.21 5.88 ± 0.12 8.34 ± 0.16

BMKR 10.31 ± 0.17 7.64 ± 0.02 8.42 ± 0.11 5.73 ± 0.07 8.02 ± 0.10

three high load consumption houses in nearby cities for the same winter day. It can
be observed that the load consumption for house 1 is similar to house 2 and both are
different from house 3.

4.2 BMKR for Electricity Load Forecasting

To test the performance of BMKR, we use the data of a high energy consumption house
in New York City in 2012. We test the performance of BMKR separately for differ-
ent seasons, and compare it with single kernel SVR and linear regression. We set the
number of boosting iterations for the proposed algorithms to 100, the step-size of ε
to 0.05, and the sampling ratio to 0.9. In order to accelerate the learning process, we
initialize the model with linear regression. The candidate kernels for BMKR are: Gaus-
sian kernels with 10 different widths (2−4, 2−3, .., 25) and a linear kernel. We repeat
the simulation for 10 times, and each time we randomly choose 50% of the data in the
season as training data and 50% of the data as testing data.

Table 1 shows the mean and standard deviation (std dev) of the Mean Average Per-
centage Error (MAPE) measurement for BMKR and the other two baselines. We can
see that BMKR achieves the best forecasting performance for all seasons, obtaining
3.3% and 3.8 % average MAPE improvements over linear regression and single kernel
SVR respectively.

4.3 Transfer Regression for Electricity Load Forecasting

We evaluate the proposed transfer regression algorithms: M-BTMKR and K-BTMKR
on high load consumption houses. We randomly pick 6 high load consumption houses
as target house and use the remaining 18 high consumption houses as source houses.
We repeat the simulation 10 times for each house, and each time we randomly choose
36 samples as the training data, and 100 samples as the testing data for the target house.
For source houses, we randomly chose 600 data samples as the training data in each
simulation. For K-BTMKR and M-BTMKR, λ is chosen by cross validation to balance
the model leaned from source house data and the model learned from target house data.

Performance of M-BTMKR and K-BTMKR are compared with linear regression,
single kernel SVR and BMKR. The candidate kernels and boosting setting are the same
as in Section 4.2. For the baselines, the forecasting models are trained only with data
from target houses, and the results are shown in Table 22, from which it can be observed

2 Due to the space limitation, we only report the results for high load consumption houses. The
results for low and base load consumption houses are similar to the high load consumption
houses.
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Table 2: Transfer learning MAPE (%) performance for high load consumption houses
Method Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Average
Linear 8.02 ± 0.05 9.11 ± 0.70 17.39 ± 1.62 6.05 ± 0.02 11.43 ± 0.15 9.42 ± 0.65 10.24 ± 0.53
SVR 11.53 ± 0.34 6.82 ± 0.39 25.90 ± 0.72 8.24 ± 0.08 26.31 ± 1.97 14.00 ± 0.65 15.47 ± 0.69

BMKR 8.06 ± 0.03 6.64 ± 0.54 17.85 ± 1.31 5.29 ± 0.01 12.82 ± 0.21 9.05 ± 0.57 9.95 ± 0.45
M-BTMKR 5.35 ± 0.01 5.99 ± 0.02 5.63 ± 0.19 5.01 ± 0.01 9.13 ± 0.01 5.69 ± 0.01 6.13 ± 0.04
K-BTMKR 5.38 ± 0.02 5.46 ± 0.30 6.97 ± 0.26 5.55 ± 0.09 8.96 ± 0.14 7.31 ± 0.21 6.60 ± 0.17

that the proposed transfer algorithms significantly improve the forecasting performance.
For each individual location, the best results are achieved by either K-BTMKR or M-
BTMKR, and M-BTMKR shows the best performance on average. The forecasting ac-
curacies of M-BTMKR and K-BTMKR are very close to each other and both are much
better than the baseline algorithms without transfer. In other words, with the proposed
transfer algorithms, the knowledge learned from the source houses is properly trans-
ferred to the target house.

4.4 Negative Transfer Analysis

Sometimes the consumption pattern for source houses and target houses can be quite
different. We would prefer that the transfer algorithms prevent potential negative trans-
fer for such scenarios. Here we present a case study to show the importance of balancing
the knowledge learned from source domains and data fitting in the target domain. We
use the same high load target houses as described in Section 4.3, but for the source
houses, we randomly chose eighteen houses from the low type houses. We repeat the
simulation for 10 times and the results are shown in Table 3.

The proposed algorithms are compared with linear regression, single kernel
SVR, BMKR, M-BTMKRwoT , and K-BTMKRwoT , where M-BTMKRwoT and
K-BTMKRwoT denote the BTMKR algorithms that we do not keep a MKL model
trained on the target domain when we learn BTMKR models (i.e., we do not train
f∗ in Algorithm 2.). Simulation results show that, if we do not keep a MKL model
trained on the target domain, we would encounter severe negative transfer problem, and
the forecasting accuracy would be even much worse than the models learned without
transfer. Meanwhile, we can see that the proposed M-BTMKR and K-BTMKR could
successfully avoid such negative transfer. In this case, M-BTMKR and K-BTMKR still
show better performance than other algorithms, though the forecasting accuracy of K-
BTMKR is very close to BMKR. M-BTMKR achieves the best average forecasting
performance and provides 14.37 % average forecasting accuracy improvements over
BMKR. In summary, the BTMKR algorithms can avoid the negative transfer when the
data distributions of source domain and target domain are quite different.

5 Related Work

Various techniques have been proposed to efficiently learn MKL models [11], and our
BMKR algorithm is originally inspired by [23], which applies the idea of AdaBoost to
train a multiple kernel based classifier. BMKR is a more general framework which can
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Table 3: Transfer learning MAPE (%) performance for high load consumption target
houses with low load consumption source houses

Method Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Average
Linear 8.02 ± 0.05 9.11 ± 0.70 17.39 ± 1.62 6.05 ± 0.02 11.43 ± 0.15 9.42 ± 0.65 10.24 ± 0.53
SVR 11.53 ± 0.34 6.82 ± 0.39 25.90 ± 0.72 8.24 ± 0.08 26.31 ± 1.97 14.00 ± 0.65 15.47 ± 0.69

BMKR 8.06 ± 0.03 6.64 ± 0.54 17.85 ± 1.31 5.29 ± 0.01 12.82 ± 0.21 9.05 ± 0.57 9.95 ± 0.45
M-BTMKR 7.71 ± 0.01 8.74 ± 0.27 8.65 ± 1.39 6.51 ± 0.52 11.08 ± 0.21 8.42 ± 0.86 8.52 ± 0.54

M-BTMKRwoT 57.64 ± 0.05 59.02 ± 0.16 59.71 ± 0.53 46.25 ± 0.81 38.52 ± 0.02 56.71 ± 0.30 52.98 ± 0.31
K-BTMKR 7.80 ± 0.06 8.60 ± 0.74 16.27 ± 2.48 5.77 ± 0.16 11.42± 0.15 9.33 ± 0.67 9.87 ± 0.71

K-BTMKRwoT 54.81 ± 0.05 58.31 ± 0.17 59.00 ± 0.11 43.95 ± 0.25 37.49 ± 0.12 56.81 ± 0.03 51.73 ± 0.12

adopt different loss functions for different learning tasks. Furthermore, the boosting ap-
proach provides a natural approach to solve small sample size problems by leveraging
transfer learning techniques. The original work on boosting based transfer learning pro-
posed in [7] introduces a sample-reweighting mechanism based on AdaBoost for classi-
fication problem. Later, this approach is generalized to the cases of regression [19], and
transferring knowledge from multiple sources [24]. In [6], a gradient boosting based
algorithm is proposed for multitask learning, where the assumption is that the model
parameters of all the tasks share a common factor. In [22], the transfer boosting and
multitask boosting algorithms are generalized to the context of online learning. While
both multiple kernel learning and transfer learning have been studied extensively, the
effort in simultaneously dealing with these two issues is very limited. Our BTMKR al-
gorithm distinguishes itself from these methods because it deals with these two learning
problems in a unified and principled approach. To our best knowledge, this is the first
attempt to transfer MKL for regression problem.

6 Conclusion

In this paper, we first propose BMKR, a gradient boosting based multiple kernel learn-
ing framework for regression, which is suitable for short-term electricity load forecast-
ing problems. Different from the traditional methods for MKL, the proposed BMKR
algorithm learns the combination weights for each kernel using a boosting-style algo-
rithm. Simulation results on residential data show that the short-term electricity load
forecasting could be improved with BMKR. We further extend the proposed boosting
framework to the context of transfer learning and propose two boosting based transfer
multiple kernel regression algorithms: K-BTMKR and M-BTMKR. Empirical results
suggest that both algorithms can efficiently transfer the knowledge learned from source
houses to the target houses and significantly improve the forecasting performance when
the target houses and source houses have similar electricity load consumption pattern.
We also investigate the effects of negative transfer and show that the proposed algo-
rithms could prevent potential negative transfer when the source houses are quite dif-
ferent from the target houses.
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3. Bühlmann, P., Hothorn, T.: Boosting algorithms: Regularization, prediction and model fit-

ting. Statistical Science pp. 477–505 (2007)
4. Bunn, D., Farmer, E.D.: Comparative models for electrical load forecasting (1985)
5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intel-

ligent Systems and Technology 2(3), 27 (2011)
6. Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., Tseng, B.: Boosted

multi-task learning. Machine Learning 85(1-2), 149–173 (2011)
7. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: ICML. pp. 193–200

(2007)
8. Fiot, J.B., Dinuzzo, F.: Electricity demand forecasting by multi-task learning. IEEE Trans.

Smart Grid (2016)
9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML. pp. 148–

156 (1996)
10. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Annals of

Statistics pp. 1189–1232 (2001)
11. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of Machine Learning

Research 12, 2211–2268 (2011)
12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, Second Edition. Springer New York (2009)
13. Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting:

A review and evaluation. IEEE Trans. on Power Systems 16(1), 44–55 (2001)
14. IEM: https://mesonet.agron.iastate.edu/request/download.phtml
15. Kamyab, F., Amini, M., Sheykhha, S., Hasanpour, M., Jalali, M.M.: Demand response pro-

gram in smart grid using supply function bidding mechanism. IEEE Trans. Smart Grid 7(3),
1277–1284 (2016)

16. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent in
function space. In: NIPS. pp. 512–518 (2000)

17. OPENEI: http://en.openei.org/doe-opendata/dataset
18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowledge and Data Engi-

neering 22(10), 1345–1359 (2010)
19. Pardoe, D., Stone, P.: Boosting for regression transfer. In: ICML. pp. 863–870 (2010)
20. Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum margin classifier.

Journal of Machine Learning Research 5, 941–973 (2004)
21. Soliman, S.A.h., Al-Kandari, A.M.: Electrical Load Forecasting: Modeling and Model Con-

struction. Elsevier (2010)
22. Wang, B., Pineau, J.: Online boosting algorithms for anytime transfer and multitask learning.

In: AAAI. pp. 3038–3044 (2015)
23. Xia, H., Hoi, S.C.: MKBoost: A framework of multiple kernel boosting. IEEE Trans. on

Knowledge and Data Engineering 25(7), 1574–1586 (2013)
24. Yao, Y., Doretto, G.: Boosting for transfer learning with multiple sources. In: CVPR. pp.

1855–1862 (2010)
25. Zhang, R., Dong, Z.Y., Xu, Y., Meng, K., Wong, K.P.: Short-term load forecasting of aus-

tralian national electricity market by an ensemble model of extreme learning machine. IET
Generation, Transmission & Distribution 7(4), 391–397 (2013)

26. Zhuang, J., Tsang, I.W., Hoi, S.C.: Two-layer multiple kernel learning. In: AISTATS. pp.
909–917 (2011)


