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Abstract. Given time-series data such as electrocardiogram (ECG) readings, or
motion capture data, how can we succintly summarize the data in a way that ro-
bustly identifies patterns that appear repeatedly? How can we then use such a
summary to identify anomalies such as abnormal heartbeats, and also forecast
future values of the time series? Our main idea is a vocabulary-based approach,
which automatically learns a set of common patterns, or ‘beat patterns,’ which are
used as building blocks to describe the time series in an intuitive and interpretable
way. Our summarization algorithm, BEATLEX (BEAT LEXicons for Summariza-
tion) is: 1) fast and online, requiring linear time in the data size and bounded
memory; 2) effective, outperforming competing algorithms in labelling accuracy
by 5.3 times, and forecasting accuracy by 1.8 times; 3) principled and parameter-
free, as it is based on the Minimum Description Length principle of summarizing
the data by compressing it using as few bits as possible, and automatically tunes
all its parameters; 4) general: it applies to any domain of time series data, and can
make use of multidimensional (i.e. coevolving) time series.

1 Introduction

Consider a medical team who wishes to monitor patients in a large hospital. How can
we design an algorithm that monitors multiple time series (blood pressure, ECG, etc.)
for a patient, automatically learns and summarizes common patterns, and alerts a doctor
when the patient’s overall state deviates from the norm?

Time series data has attracted huge interest in countless domains, including medicine
[?], social media [?], and sensor data [?]. But as the scale and complexity of time series
data has exploded, the human capacity to process data has not changed. This has led
to a growing need for scalable algorithms which automatically summarize high-level
patterns in data, or alert a user’s attention toward anomalies.

Figure 1 (top) shows an example of an ECG sequence. This ECG sequence con-
tains two distinct types of patterns: indeed, it was manually labelled by cardiologists
as shown in Figure 1 (bottom), who marked a segmentation at the start of each heart-
beat (shown by the grey vertical lines), and labeled the heartbeats as ‘normal beats’ and
‘premature ventricular contractions,’ a type of abnormal heartbeat. A natural way to
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summarize this sequence, then, would be to exploit patterns that occur multiple times:
namely, the two types of heartbeat patterns.
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Fig. 1: Accurate segmentation, labelling, and forecasting: BEATLEX learns a vocab-
ulary, segments the data (grey dotted vertical lines), labels heartbeat types based on
the closest vocabulary term, and forecasts future data to the right of the black dotted
line. Its output matches the ground truth almost exactly, and the vocabulary terms cor-
respond closely to medically relevant patterns: ‘normal sinus rhythm’ and ‘premature
ventricular contraction.’

Thus, our goal is to summarize a time series using patterns that occur multiple
times. Here patterns refers to any subsequences which are broadly similar to one an-
other. This includes periodic time series, but applies much more generally to allow
patterns whose shape or length gets distorted, or changes over time, or even multiple
patterns interspersed with one another as in Figure 1.
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Hence, the problem that we focus on is:

Informal Problem 1. Given a time series X with patterns, find:

– Summarization: a model that succintly represents the common patterns in X .
– Anomalies: time periods in X during which anomalous events occurred (e.g. ab-

normal heartbeats).
– Forecast: forecast future time ticks of X .

To robustly handle real-world data such as in Figure 1, there are several key chal-
lenges: 1) patterns can be highly complex and nonlinear, so simple parametric models
do not work. 2) Patterns are often distorted in length and shape, so methods that assume
that a pattern straightforwardly repeats itself do not work. 3) The correct segmentation
of the data is unknown: domain-specific segmentation tools for ECG sequences are not
enough as we want be able to handle any type of time series (e.g. motion-capture data
in Figure 2).

To solve this problem, our algorithm adopts a vocabulary-based approach, as illus-
trated in Figure 1 (middle). It automatically and robustly learns a vocabulary containing
the common patterns in the data. At the same time, it finds cut points to break up the
data into segments, and describes each segment based on its closest vocabulary term,
labelling each segment accordingly. Note in Figure 1 that both its segmentation and
labelling are essentially identical to the ground truth annotation by cardiologists.

This vocabulary-based approach is intuitive and interpretable, since it describes the
data exactly as a human would, in terms of its patterns and where they are located. In
the ECG case, the learned vocabulary terms are also medically relevant, as shown in
Figure 1 (right): the blue and red beats correspond to known heartbeat patterns.

Figure 1 also shows that BEATLEX also allows accurate forecasting: the part of the
ECG sequence to the right of the black dotted line was forecasted by the algorithm,
which also matches the ground truth. Note that the algorithm learns from past data that
3 normal (blue) beats tend to be followed by an abnormal (red) beat, then cycling back
to normal beats, a known condition called ‘quadrigeminy.’
Our method is:

– Fast and online: BEATLEX takes linear time in the length of the time series. More-
over, it requires bounded memory and constant update time per new data point,
making it usable even with limited processing power, such as wearable computers
or distributed sensor networks.

– Effective: BEATLEX outperforms existing algorithms in labelling accuracy by 5.3
times, and forecasting accuracy by 1.8 times.

– Principled and parameter-free: BEATLEX is fit using the Minimum Description
Length principle of compressing the data into as few bits as possible, and automat-
ically tunes all its parameters.

– General: BEATLEX applies to any type of time series data, and can make use of
multidimensional time series, e.g. motion capture data in Figure 2.

2 Background and Related Work

Time Series Summarization. Methods for summarizing a time series can be divided into
model-based and non-model-based methods. Model-based methods estimate a statisti-



4 B. Hooi, S. Liu, A. Smailagic and C. Faloutsos.

0 5 10 15 20 25 30
Time (s)

-100

-50

0

50

100

150

1
2

3
Dribbling Shooting

Two-handed
dribblingDribbling

V1

V2

V3

V1

V2

V3

Learned
vocabulary

Learned labelling

Fig. 2: Generality: BEATLEX accurately segments and labels action types in motion
capture data of a basketball player. The 4 coloured lines correspond to the subject’s left
and right arms and legs.

cal model, and include classic methods such as autoregression (AR), ARIMA [?], and
Hidden Markov Models (HMMs) [?]. More recent variants include DynaMMo [?], Au-
toPlait [?], and RegimeCast [?]. Non model-based methods summarize the data using
approximations or feature representations, including SAX [?]. TBATS [?] is a forecast-
ing approach allowing for complex seasonality. SAX [?] discretizes a time series into
symbols, and has been used as a preprocessing step before time series clustering [?,?]
and anomaly detection [?].

Distance-Based Methods. These methods extract subsequences using sliding windows,
and measure distances between the subsequences, using either Euclidean distance or
Dynamic Time Warping [?] (DTW). DTW is a distance-like measure that allows elas-
tic shifting of the time axis, which has shown good empirical performance for time
series classification [?]. Discord Detection methods [?,?] apply Euclidean distances
or DTW between subsequences for anomaly detection, while subsequence clustering
methods [?,?] find clusters of similar subsequences.

Table 1 summarizes existing work related to our problem. BEATLEX differs from
existing methods as follows: 1) BEATLEX allows for patterns that change over time;
2) BEATLEX is an online algorithm; 3) BEATLEX uses a novel vocabulary-based ap-
proach; importantly, this difference allows it to robustly capture arbitrarily complex
patterns to summarize the data.
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Table 1: Comparison of related approaches. ‘AR++’ refers to AR and its extensions
(ARIMA, etc). ‘Changing Patterns’ refer to modelling sequences with patterns that
change over time. ‘Non-linear’ refers to sequences with non-linear dynamics.
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3 Problem Definition

Preliminaries Table 2 includes the main definitions and symbols used in this paper.
We first introduce the Minimum Description Length (MDL) principle, which will

allow us to define what a good summarization is. The MDL principle states that the best
representation for some data is the one that leads to the best compression of the data.
Formally, given data X , the MDL principle states that we should find the model M to
minimize the description length of X , which is defined as Cost(M) + Cost(X|M),
where Cost(M) is the number of bits needed to encode the model M , and Cost(X|M)
is the number of bits needed to encode the data given model M . The full expression for
these costs depends on the type of model used, and will be given later, in Eq. (1).

Based on this cost function, we can formally define our summarization problem:

Problem 1 (Summarization). Given (Xi)
m
i=1, a real-valued time series of length m, find

a model M to minimize the description length, Cost(M) + Cost(X|M).

We next define our model M , and explain how it is used to compress the data.

4 Model

Figure 3 illustrates our vocabulary-based model for a time series X . It consists of:

– Vocabulary: the ‘vocabulary terms’ V1, . . . , Vk are short time series patterns which
will be used to explain segments of the actual data. For example, one pattern may
represent normal heartbeats, while another may represent abnormal heartbeats.

– Segmentation: this describes how X is split into continuous segments of time. We
represent the segments using intervals [a1, b1], . . . , [an, bn], where a1 = 1, bn =
m, and bi + 1 = ai+1 for i = 1, . . . , n− 1.
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Symbol Interpretation

X Real-valued input time series
Xa:b Subsequence of X from index a to b (inclusive)

m Length of time series X
Vi ith vocabulary term
ni Length of Vi

k Number of vocabulary terms
n Number of segments
ai Start of ith segment
bi End of ith segment
Xi ith segment, i.e. Xai:bi

z(i) Assignment variable for ith segment
Ni Number of segments assigned to vocabulary term i

C(·) Description cost, i.e. no. of bits needed to describe a parameter
CF Number of bits for encoding a floating point number

MDTW Modified DTW distance (see Definition 1)
smin, smax Minimum and maximum width of a segment

kmax Maximum vocabulary size
w Width of Sakoe-Chiba band for DTW [?]

Table 2: Symbols and Definitions

– Assignment variables: these describe which vocabulary term is used to encode
each segment. For each i, the assignment variable z(i) means that the z(i)th vocab-
ulary term (i.e. Vz(i)) is used to encode segment i.

Learned 
vocabulary

V1

V2
a1 a2 b2b1 a4 b4

z(1)=1 z(2)=1 z(3)=2 z(4)=1

a3 b3

Assignment

Segmentation

Fig. 3: Illustration of our summarization model. The data is broken into segments, and
the assignment describes how each segment is described using the vocabulary.
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5 Optimization Objective

In this section we explain our optimization objective, which is based on minimizing the
description length of the model, and the data given the model.

5.1 Model Cost

From our model definition in Section 4, the parameters in the model are the vocabulary
size k, the vocabulary sequences V1, . . . , Vk, the segmentation intervals [a1, b1], . . . , [an, bn],
and the assignment variables z(1), . . . , z(n). Let C(·) denote the number of bits re-
quired to store a parameter. As preliminaries: first, encoding an arbitrary integer re-
quires log∗ k bits.4 Second, encoding a discrete variable taking N possible values re-
quires log2 N bits. In the rest of this paper, all logarithms will be base-2.

The model cost consists of:

– Vocabulary size: storing the positive integer k requires log∗ k bits.
– Vocabulary: storing Vi requires ni × CF bits, where CF is the number of bits

needed to encode a floating point number.5

– Segmentation: for the segmentation [a1, b1], . . . , [an, bn], it is sufficient to store
b1, . . . , bn−1, since these completely determine the segmentation. Each bi takes m
possible values. Hence, the total number of bits required is (n− 1) log(m).

– Assignment variables: there are n such variables, each taking k possible values.
Hence, the number of bits required is n log(k).

In total, the number of bits needed to store the model is:

Cost(M) = log∗(k)︸ ︷︷ ︸
cost of k

+CF

k∑
i=1

ni︸ ︷︷ ︸
vocab. cost

+(n− 1) log(m)︸ ︷︷ ︸
segmentation cost

+n log(k)︸ ︷︷ ︸
assign. cost

5.2 Data Cost

How do we encode X given this model? Consider each segment Xi, and its correspond-
ing vocabulary term V = Vz(i). We want to encode Xi such that its encoding cost is low
if it is similar to V , where this similarity should allow for slight distortions in shape. To
achieve this, we encode Xi based on a modification of Dynamic Time Warping (DTW).
Recall that given two sequences A and B, DTW aligns them while allowing for expan-
sions on either sequence (e.g. if an entry of A is matched to two entries of B, we say
that entry of A was ‘expanded’ once).

We modify DTW by adding penalties for each expansion. Similar penalized variants
of DTW exist [?]; however, since we use an MDL framework, our choice of penalties
has a natural interpretation as the number of bits needed to describe Xi in terms of V .

4 Here, log∗ is the universal code length for positive integers [?].
5 We use CF = 8, following [?].
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Definition 1 (Modified DTW). Given two sequences A and B, MDTW(A,B) modifies
regular DTW by adding a penalty of log nA for each expansion to A and log nB for each
expansion to B, where nA and nB are the lengths of A and B.

The number of bits needed to describe Xi in terms of V is given by the MDTW
cost: i.e. C(Xi|V ) = MDTW(Xi, V ). To see this, note that the penalty, log nA for
expansions to A, exactly describes the number of bits needed to encode an expansion to
A, since each expansion is of one of nA possible entries. Thus the penalties capture the
number of bits needed to encode expansions. In addition, we need to encode the remain-
ing errors after warping; assuming these errors are independently Gaussian distributed,
based on Huffman coding, their encoding cost in bits is their negative log likelihood
under the Gaussian model [?], which is the standard squared-error DTW cost.

5.3 Final Cost Function

Combining our discussion so far, the description length cost under model M is:

f(M) = Cost(M) + Cost(X|M)

= log∗(k)︸ ︷︷ ︸
cost of k

+CF

k∑
i=1

ni︸ ︷︷ ︸
vocab. cost

+(n− 1) log(m)︸ ︷︷ ︸
segmentation cost

+n log(k)︸ ︷︷ ︸
assign. cost

+

n∑
i=1

MDTW(Xi, Vz(i)))︸ ︷︷ ︸
data cost

(1)

6 BEATLEX Summarization Algorithm

6.1 Overview

In this section, we describe our algorithm for learning vocabulary terms, a segmentation,
and an assignment, to minimize description length. From a high level, we first generate
the initial vocabulary term (New Vocabulary Term Generation). Then, starting at the
beginning of the time series, our algorithm repeatedly finds the closest match between
any existing vocabulary term and a prefix of the time series (Best Vocabulary-Prefix
Match). If a sufficiently good match is found, it assigns this segment to this vocabulary
term (Vocabulary Merge). Otherwise, it creates a new vocabulary term (New Vocabulary
Term Generation).

6.2 Best Vocabulary-Prefix Match

Assume that the algorithm has processed the time series up to time i so far, and the
current vocabulary it has learned is V1, . . . , Vk. The next key subroutine the algorithm
uses is to find the best match between any vocabulary term and any prefix of the current
time series, i.e. Xi+1:i+s, for some s with smin ≤ s ≤ smax, where smin and smax are
lower and upper bounds of the allowed segment length. We choose the best vocabulary
term index j∗ and the best prefix length s∗ by minimizing average encoding cost:

j∗, s∗ = argmin
j,s

C(Xi+1:i+s|Vj)

s
= argmin

j,s

MDTW (Xi+1:i+s, Vj)

s
(2)
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Algorithm 1: BEATLEX summarization algorithm
Input : Time series X
Output: Vocabulary V1, . . . , Vk, assignments z, segmentation S.

1 k = 0;
2 i = 1; // current position
3 while i < m do
4 BFind best vocabulary-prefix match:

5 j∗, s∗ = argmin
j,s

C(Xi+1:i+s|Vj)

s
; Bsee Section 6.2

6 BIf using existing vocab. has lower cost than creating new vocab. term:
7 if C(Xi+1:i+s∗ |Vj∗) < CF · s∗ or k = kmax then

8 BUse existing vocabulary term:
9 Vj∗ = VOCABMERGE(Xi+1:i+s∗ , Vj∗)); Bsee Section 6.3

10 Append j∗ to z;

11 else
12 BCreate new vocabulary term:
13 s∗ = NEWVOCABLENGTH(X, i, (V1, . . . , Vk)); Bsee Section 6.4
14 Vk+1 = Xi+1:i+s∗ ;
15 Append k + 1 to z;
16 k = k + 1;

17 Append [i+ 1 : i+ s∗] to S;
18 i = i+ s∗;

Dividing by s allows us to compare fairly between different prefix lengths, by finding
the prefix that can be encoded most efficiently per unit length.

How do we efficiently perform the minimization in (2)? Consider a single vocab-
ulary term; we have to compare it against smax − smin + 1 choices of prefixes, and
running a separate MDTW computation for each would be very slow. It turns out that
we can minimize across all these subsequences optimally in a single MDTW computa-
tion. Across k vocabulary terms, this gives a total of k MDTW computations:

Theorem 1. The best j∗, s∗ minimizing (2) can be found in k MDTW computations,
and requires O(k · w · smax) time.

Proof. For each j, consider computing the MDTW on Vj and Xi+1:i+smax
. Each entry

of the DTW matrix computed by the dynamic programming DTW algorithm encodes
the minimum DTW cost between each prefix of Vj and each prefix of Xi+1:i+smax .
Hence, the last smax − smin + 1 entries of the last row of the DTW matrix con-
tains the minimum MDTW distance between Vj and each of the prefixes Xi+1:i+s

for smin ≤ s ≤ smax. Our algorithm can extract these values, divide them by their
prefix lengths s, and choose the one minimizing average encoding cost. This requires
k MDTW computations, one for each vocabulary term; each MDTW computation re-
quires O(w · smax) time, using a Sakoe-Chiba band of width w [?]. �
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6.3 Vocabulary Merge (VOCABMERGE)

Now assume we have computed the best vocabulary-prefix match. If the resulting aver-
age encoding cost is less than CF , then since generating a new vocabulary term would
require CF bits per unit length, the most efficient choice is to encode Xi+1:i+s∗ using
the existing vocabulary Vj∗ , so our algorithm makes this choice (Line 7). Otherwise, it
creates a new vocabulary term (see Section 6.4).

After encoding Xi+1:i+s∗ using Vj∗ , we would like to update Vj∗ to make it an
‘average’ of the subsequences it encodes, to allow our algorithm to keep track of pat-
terns that change over time. We use a running average approach, in which we keep
track of how many subsequences have been assigned to Vj∗ so far (call this number
Nj∗ ). Intuitively, we should replace Vj∗ by a weighted average of Xi+1:i+s∗ and itself,
with weight of 1

1+Nj∗
given to Xi+1:i+s∗ , and Nj∗

1+Nj∗
given to the current value of Vj∗ ;

this makes sense since the current value of Vj∗ is an average of the Nj∗ subsequences
currently assigned to it. However, rather than using a straightforward average, we first
run the MDTW algorithm in order to align Xi+1:i+s∗ to Vj∗ before averaging it with
Vj∗ . Straightforward averaging would adversely affect the sequence shape, e.g. if both
sequences have sharp peaks in slightly different locations, the average would have two
peaks. Aligning the sequences first avoids this problem.

6.4 New Vocabulary Term Generation (NEWVOCABLENGTH)

In this case our algorithm chooses to generate a new vocabulary term Vk+1. To select
the ideal length nk+1, we iterate over all possible nk+1. For each, we then use Best
Vocabulary-Prefix Match to compute the average encoding cost of the next prefix after
Xi+1:i+nk+1

, matched to any of the vocabulary terms (including Vk+1). The final length
nk+1 chosen is the one that results in the lowest such average encoding cost.

6.5 Computation Time and Memory

BEATLEX is linear in the length m of the time series:

Lemma 1. BEATLEX runs in O(m · k · w · smax/smin + k2 · w · s2max) time.

Proof. As shown in Theorem 1, each vocabulary-prefix match step takes O(k · w ·
smax) time. We perform this step up to once per segment (not including vocabulary
term generation), so at most once every smin steps, taking O(m · k · w · smax/smin)
in total. The vocabulary term generation step runs k times, each trying at most smax

candidates taking O(k · w · smax) each time, for a total of O(k2 · w · s2max). �

Note that typically m greatly exceeds the other variables, the O(k2 ·w·s2max) term is
typically negligible. Figure 5c verifies the linear scalability of our algorithm in practice.

Lemma 2. BEATLEX does not require the past history of the time series, and hence
requires only bounded memory.
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Proof. We verify from Algorithm 1 that BEATLEX never needs to access the past his-
tory of the time series, and operates on incoming time series values while only keeping
track of its vocabulary, storing at most its kmax vocabulary terms at any time, which
requires bounded memory. �

6.6 Extensions
Multidimensional Time Series: Figure 6 shows our algorithm applied on a 2-lead (i.e.
2-dimensional) ECG. To handle multidimensional time series, only a small change is
needed: now, our vocabulary terms are likewise multidimensional. When encoding a
subsequence using a vocabulary term, we use the dth dimension of the vocabulary term
to encode the dth dimension of the subsequence. The description length of encoding a
subsequence is then the sum of description lengths of encoding each individual dimen-
sion separately. The rest of our BEATLEX algorithm applies without change.

Anomaly Detection: Figure 1 reports the vocabulary terms with their frequencies in the
data; PVCs are the rarer pattern. The most straightforward kind of anomaly are patterns
that occur exactly once; we can easily detect these by selecting vocabulary terms that
are only used to encode a single segment. More generally, we may also wish to detect
rare patterns such as the PVCs in Figure 1. We can easily detect this kind of anomaly
(as well as the former type) by ranking the vocabulary terms by how many segments
they encode, and returning those encode the fewest.

Forecasting: How do we forecast future values of the time series, as done in Figure 1?
Based on our learned segment labels, we learn Markov Models of orders 0, 1, . . . , rmax

using the usual maximum likelihood approach [?]. Here the 0th order model simply
ignores the past and forecasts the most frequent label. To forecast the next segment
label, we first try to use the highest (rmax) order model, but repeatedly drop to the next
lower order if the sequence of the last r labels (where r is the current order) has not
been seen in the past. This process continues to forecast as many segment labels as we
need. Our forecasts for the actual data are the associated vocabulary terms.

Automatic Parameter Setting: our MDL objective (5) provides an easy way to choose
parameters automatically, via grid search minimizing the description length cost. To
keep the algorithm fast, we only do this once per type of data (e.g. on a single ECG
sequence), then fix those values.

7 Experiments

We design experiments to answer the following questions:

– Q1. Labelling Accuracy: how accurate are the labels returned by BEATLEX?
– Q2. Forecasting Accuracy: how accurately does it forecast future data?
– Q3. Scalability: how does the algorithm scale with the data size?
– Q4. Interpretability: are the results of the algorithm interpretable by the user?

Our code, links to datasets, and experiments are publicly available at www.andrew.
cmu.edu/user/bhooi/beatlex. Experiments were done on a 2.4 GHz Intel
Core i5 Macbook Pro, 16 GB RAM running OS X 10.11.2.

www.andrew.cmu.edu/user/bhooi/beatlex
www.andrew.cmu.edu/user/bhooi/beatlex
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7.1 Data

We evaluate our algorithm on ECG sequences from the MIT-DB Arrythmia Database6

(MITDB) [?], as well as motion capture data from the CMU motion capture database7.

MITDB Dataset The MITDB dataset contains 48 half-hour ECG recordings from test
subjects from Beth Israel Hospital. Each recording consists of two ECG sequences, or
‘leads,’ at 360 time ticks per second, for a total of 650, 000 ticks. Ground-truth annota-
tions by two or more independent cardiologists indicate the position and type of each
heartbeat; disagreements were resolved to obtain the annotations.

CMU Motion Capture Dataset The dataset consists of motion-captured subjects per-
forming various actions. Each recording is a 64 dimensional vector (representing the
subject’s body parts), of which we chose 4 dimensions (left-right arms and legs). The
recording lasts 50 seconds with 120 ticks per second, for a total of 6000 time ticks.

7.2 Q1: Labelling Accuracy

Recall that BEATLEX labels each time tick based on which vocabulary term it was as-
signed to. We evaluate this by comparing it to the ground truth labelling using standard
clustering metrics: Adjusted Rand Index [?] and Normalized Mutual Information [?].
Due to the fairly large number of ECG sequences and trials, we subset time series to
5000 time ticks, and do the same for our forecasting tests in the next subsection.

Baselines The baselines are Hidden Markov Models (HMMs) [?] and Autoplait [?],
which identifies ‘regimes’ in time series data using a hierarchical HMM-based model.

Figure 4 shows the labelling accuracy of BEATLEX, HMMs and Autoplait, averaged
across all 48 ECGs. Under both metrics, BEATLEX clearly outperforms both baselines.
The key difference is that HMM-based methods (including Autoplait) have difficulty
accurately representing the complex and nonlinear ECG patterns based on a model only
using state transitions. In contrast, BEATLEX treats entire vocabulary terms as ‘building
blocks,’ and hence has no particular difficulty handling complex patterns.

7.3 Q2: Forecasting Accuracy

We now evaluate BEATLEX in terms of forecasting future data. For each ECG sequence,
the last 1000 time ticks (approximately 3 seconds) are hidden from the algorithm, and
the algorithm forecasts this data. We compare the forecasts to the true values using Root
Mean Squared Error (RMSE), as well as Dynamic Time Warping (DTW) distance.

Baselines As baselines, we use the classical ARIMA [?] algorithm, as well as the more
recent TBATS [?] forecasting algorithm. We select the ARIMA order using AIC.

Figure 5 shows the forecasting error of BEATLEX compared to the baselines (lower
is better). BEATLEX outperforms the baselines according to both metrics, but particu-
larly under DTW distance. This difference between metrics is not surprising: RMSE is
extremely sensitive to small temporal variations, e.g. of the spikes present in ECG data.

6 https://physionet.org/cgi-bin/atm/ATM?database=mitdb
7 http://mocap.cs.cmu.edu/
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Fig. 4: Labelling accuracy (higher is better): BEATLEX outperforms baselines, ac-
cording to the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)
metrics, averaged across ECG sequences. Error bars indicate one standard deviation.

7.4 Q3: Scalability

Figure 5c verifies the linear scalability of BEATLEX. We vary the length of a subset of
an ECG sequence, and plot running time against length. The plot is around parallel to
the main diagonal on a log-log plot, indicating linear growth. BEATLEX scales to large
datasets, running on data of length 512, 000 in less than 200s.

7.5 Q4: Discoveries and Interpratability

In this section, we show that BEATLEX automatically discovers interpretable, medically
relevant patterns. In Figure 1, the learned vocabulary terms can be easily and accurately
matched with medically recognized patterns, ‘normal sinus rhythm’ and ‘premature
ventricular contraction’ (PVC) respectively. Going beyond individual heartbeats, our al-
gorithm also successfully learns a pattern present in Figure 1 known as ‘quadrigeminy’
in which PVC beats show up approximately every 4 beats. Medically, these patterns
occur because the heart re-polarizes after a PVC, during which normal beats occur [?].

Multidimensionality: Section 6.6 explains that our algorithm handles multidimensional
time series by learning multidimensional vocabulary terms. Figure 6 illustrates this.
The two vocabulary terms still accurately correspond to normal sinus rhythm and PVCs
respectively, except that each now has a multidimensional vocabulary term.

Motion Capture Dataset: our algorithm is generalizable to other time series datasets.
Figure 2 shows its results on motion capture data of a basketball player. Despite sig-
nificant variation in the width and shape of a pattern, our algorithm still successfully
learns, segments and labels vocabulary terms corresponding to dribbling, shooting and
two-handed dribbling.
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Fig. 5: Forecast error (lower is better): BEATLEX outperforms competing baselines
in forecast accuracy averaged across all ECG time series, according to the standard
RMSE and Dynamic Time Warping (DTW) distance metrics. Scalability: BEATLEX
scales linearly, shown by growth parallel to the dotted diagonal on a log-log plot.

8 Conclusion

We presented the BEATLEX algorithm, a novel vocabulary-based approach designed
to handle time series with patterns. It robustly learns interpretable vocabulary terms,
in the face of possibly nonlinear patterns, distortions, and an unknown segmentation.
BEATLEX is:

– Fast and online: BEATLEX takes linear time, bounded memory and constant up-
date time per data point.

– Effective: BEATLEX outperforms existing algorithms in labelling accuracy by 5.3
times, and forecasting accuracy by 1.8 times.

– Principled and parameter-free: BEATLEX is fit using the Minimum Description
Length (MDL) principle, and automatically tunes its parameters.

– General: BEATLEX applies to any domain of time series data, and multidimen-
sional time series.

Reproducibility: Our code, links to datasets, and experiments are publicly available at
www.andrew.cmu.edu/user/bhooi/beatlex.
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Fig. 6: Accurate multidimensional summarization and forecasting: an ECG se-
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