
Wikipedia Vandal Early Detection:
from User Behavior to User Embedding

Shuhan Yuan1, Panpan Zheng2, Xintao Wu2, and Yang Xiang1

1 Tongji University, Shanghai 201804, China,
{4e66,shxiangyang}@tongji.edu.cn

2 University of Arkansas, Fayetteville AR 72701, USA
{pzheng,xintaowu}@uark.edu

Abstract. Wikipedia is the largest online encyclopedia that allows any-
one to edit articles. In this paper, we propose the use of deep learning
to detect vandals based on their edit history. In particular, we develop a
multi-source long-short term memory network (M-LSTM) to model user
behaviors by using a variety of user edit aspects as inputs, including
the history of edit reversion information, edit page titles and categories.
With M-LSTM, we can encode each user into a low dimensional real vec-
tor, called user embedding. Meanwhile, as a sequential model, M-LSTM
updates the user embedding each time after the user commits a new
edit. Thus, we can predict whether a user is benign or vandal dynami-
cally based on the up-to-date user embedding. Furthermore, those user
embeddings are crucial to discover collaborative vandals.

1 Introduction

Wikipedia, as one of the world’s largest knowledge bases on the web, heavily re-
lies on thousands of volunteers to make contributions. This crowdsourcing mech-
anism based on the freedom-to-edit model (i.e., any user can edit any article)
leads to a rapid growth of Wikipedia. However, Wikipedia is plagued by van-
dlism, namely “deliberate attempts to damage or compromise integrity” 3. Those
vandals who commit acts of vandalism damage the quality of articles and spread
false information, misleading information, or nonsense to Wikipedia users as well
as information systems such as search engines and question-answering systems.

Reviewing millions of edits every month incurs an extremely high workload.
Wikipedia has deployed a number of tools for automatic vandalism detection,
like ClueBot NG 4 and STiki 5. These tools use heuristic rules to detect and
revert apparently bad edits, thus helping administrators to identify and block
vandals. However, those bots are mainly designed to score edits and revert the
worst-scoring edits.

Detecting vandals and vandalized pages from crowdsourcing knowledge bases
has attracted increasing attention in the research community [12, 15, 21]. For

3 https://en.wikipedia.org/wiki/Wikidata:Vandalism
4 https://en.wikipedia.org/wiki/User:ClueBot_NG
5 https://en.wikipedia.org/wiki/Wikipedia:STiki



example, [12] focused on predicting whether an edit is vandalism. They developed
a set of 47 features that exploit both content and context information of users
and edits. The content features of an edit are defined at levels of character, word,
sentence, and statement whereas the context features are used to quantify users,
edited items, and their respective revision histories. [15] focused on predicting
whether a user is a vandal based on user edits. The developed VEWS system
adopted a set of behavior features based on edit-pairs and edit-patterns, such
as vandals make faster edits than benign user, benign users spend more time
editing a new page than vandals, or benign users more likely edit a meta-page
than vandals. All the above features empirically capture the differences between
good edits and vandalism to some extent and there is no doubt that classifiers
(e.g., randomforest or SVM) with these features as inputs can achieve good
accuracy of detecting vandalism.

Different from the existing approaches that heavily rely on hand-designed
features, we tackle the problem of vandal detection by automatically learning
user behavior representations from their edit sequences. Each edit in a user’s
edit sequence contains many attributes such as PageID, Title, Time, Categories,
PageType, Revert Status, and Content. We transform each edit sequence into
multiple aspect sequences and develop a multi-source long-short term memory
network (M-LSTM) to detect vandals. Each LSTM processes one aspect se-
quence and learns the hidden representation of the corresponding aspect of user
edits. The LSTM as a sequence model can represent the user edit sequence with
variable-length as fixed-length real vectors, i.e., aspect representations. We then
apply the attention model [4, 33] to derive the user representation, called user
embedding, by combining all aspect representations. The user embedding accu-
rately captures all aspects of a user’s edit information. Thus we can use user
embeddings as classifier inputs to separate vandals from benign users. To the
best of our knowledge, this is the first work to use the deep neural network
to represent users as user embeddings which capture the information of user
behavior for vandal detection.

Our approach has several advantages over past efforts. First, neither heuris-
tic rules nor hand-designed features are needed. Second, while each user may
have a different number of edits and each user may have different edit behavior,
we map each user into the same low-dimensional embedding space. Thus user
embeddings can be easily used for a variety of data mining tasks such as clas-
sification, clustering, outlier analysis, and visualization. Third, by using various
aspect information (e.g., article title and categories), our M-LSTM is able to ef-
fectively capture hidden relationships between different users. The derived user
embeddings can be used to analyze collaborative vandals who commit acts of
vandalism together to impose big damages and/or evade detection. Fourth, our
M-LSTM can naturally achieve early vandal detection and has great potential
to be deployed for dynamically monitoring user edits and conducting real-time
vandal detection.

The rest of the paper is organized as follows. Section 2 summarizes the related
work about deep neural networks and the vandal detection. Section 3 introduces



our M-LSTM model for vandal (early) detection. The experimental results and
analysis are discussed in Section 4. Section 5 concludes the paper.

2 Related Work

Deep neural networks have achieved promising results in image [11], text [20],
and speech recognition [9]. The key ingredient for the successful of deep neural
network is because it learns meaningful representations of inputs [5]. For exam-
ple, in text area, all the words are trained to represent as real-valued vectors
called word embeddings which capture the semantic relations among words [20].
Then, a neural network model can further combine the word embeddings to
represent the sentences or documents [33]. For image recognition, a deep neural
network can learn different levels of image representations on different levels of
the neural network [38]. In this work, we propose a M-LSTM model to train the
representations of users and further use them to predict vandals.

Most work for vandalism detection extracts features, e.g., content-based fea-
tures [1,14,21], context features to measure user reputation [2], spatial-temporal
user information [31], and then uses those features as classifier inputs to predict
vandalism. Moreover, [19] utilizes search engine to check the correctness of user
edits. However, it is difficult to apply these approaches based on hand-design
features to detect subtle and collaborative vandalism.

Wikipedia vandal detection is related to fake review detection. In [22], dif-
ferent types of behavior features were extracted and used to detect the fake
reviews in Yelp. [17] have identified several representative behaviors of review
spammers. [32] studied the co-anomaly patterns in multiple review-based time
series. [8] proposed approaches to detect fake reviews by characterizing bursti-
ness of review. There has been extensive research on detecting anomaly from
graph data [3,28,34] and detecting Web ranking spams [27]. In [35], the authors
developed a fraud detection framework that combines deep neural networks and
spectral graph analysis. They developed two neural networks, deep autoencoder
and convolutional neural network, and evaluated them in a signed graph ex-
tracted from Wikipedia data. [23] studied various aspects of content-based spam
on the Web and presented several heuristic methods for detecting content based
spam. Finding time points at which graph changes significantly given a sequence
of graphs has also been studied [24]. Although some of above approaches can be
used for vandal detection, they are not able to automatically extract and fuse
multiple aspects of user edit behaviors.

Several network embedding methods including DeepWalk [26], LINE [30],
Node2vec [10], SNE [36], and DDRW [16] have been proposed. These models are
based on the neural language model. Some works learn the network embedding by
considering the node attribute or other information from heterogeneous networks
[6,29]. Unlike all the embedding works described above, in this paper, we explore
to build user embedding from user edit sequence data.



3 Multi-source LSTM for Vandal Early Detection

Our key idea is to adopt multiple LSTMs to transform a variable-length edit
sequence into multiple fixed-length aspect representations and further use the
attention model to combine all aspect representations into the user embedding.
As user embeddings capture all aspects of user edits as well as relationships
among users, they can be used for detecting vandals and examining behaviors
of vandalism.

3.1 LSTM Revisited

Fig. 1: Standard LSTM for Classification

Long short-term memory network [13], as one class of recurrent neural net-
works (RNNs), was proposed to model the long-range sequences and has achieved
great success in natural language processing and speech recognition recently.
Figure 1 shows the structure of the standard LSTM for classification. Given a
sequence x = (x1, . . . ,xt, . . . ,xT ) where xt ∈ Rd denotes the input at the t-th
step, LSTM maintains a hidden state vector ht ∈ Rh to keep track the sequence
information with the input from the current step xt and the previous hidden
state ht−1. LSTM is composed by a special unit called memory block in the
recurrent hidden layer to compute the hidden state vector ht. Each memory
block contains self-connected internal memory cells and special multiplicative
units called gates to control what kinds of information need to be encoded to
the internal memory or discarded. Each memory block has an input gate to con-
trol the input information into the memory cell, a forget gate to forget or reset
the current memory, and an output gate to control the output of cell into the



hidden state. Formally, the hidden state ht is computed by

c̃t = tanh(Wcxt + Ucht−1 + bc)

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct)

(1)

where σ is the sigmoid activation function; � represents element-wise product;
it, ft, ot, ct indicate the input gate, forget gate, output gate, and cell activation
vectors and c̃t denotes the intermediate vector of cell state; W and U are the
weight parameters; b is the bias term. We denote all LSTM parameters (W, U
and b ) as Θ1.

After the LSTM reaches the last step T , hT encodes the information of the
whole sequence and is considered as the representation of the sequence. It can
then be used as an input of the softmax classifier,

P (ŷ = k|hT ) =
exp (wT

k hT + bk)∑K
k′=1 exp(wT

k′hT + bk′)
, (2)

where K is number of classes, ŷ is the predicted class of the sequence, wk and bk
are the parameters of softmax function for the k-th class, and wT

k indicates the
transpose of wk. All softmax parameters Wk and bk over K classes are denoted
as Θ2. The LSTM model aims to optimize Θ1 and Θ2 by minimizing the cross
entropy loss function,

L = − 1

N

N∑
i=1

yi ∗ log(P (ŷi)), (3)

where yi is the true class of the i-th sequence, and N is the number of training
sequences.

3.2 Multi-source LSTM

We develop a multi-source LSTM model to capture all useful aspects of edits.
As different aspects carry different weights for vandal detection, we adopt the
attention model [4,33] to dynamically learn the importance of each aspect. The
user embeddings are then used as inputs of softmax classifier to separate vandals
from benign users.

Formally, for a user u with T edits, his edits can be modeled as a sequence
eu = (eu1

, . . . , eut
, . . . , euT

) where eut
includes all related information about the

t-th edit. Please note different users may have different numbers of edits. For
each edit sequence eu, we transform it into M aspect sequences. Its m-th aspect

sequence, denoted as x(m) = (x
(m)
1 ,x

(m)
2 , . . . ,x

(m)
T ), captures the m-th aspect



Fig. 2: Multi-source LSTM

of edit information and is used as the input of the m-th LSTM in our multi-
source LSTM. Figure 2 illustrates our M-LSTM model with M aspect sequences

as inputs. The last hidden states h
(m)
T (m = 1, · · · ,M) encode all the aspect

information of the user’s edit sequence. We apply the attention model as shown
in Equation 4–6 to combine all aspect information into the user embedding.

z
(m)
T = tanh(Wah

(m)
T ), (4)

α
(m)
T =

exp(uT
a z

(m)
T )∑M

m′=1 exp(uT
a z

(m′)
T )

, (5)

sT =

M∑
m=1

α
(m)
T · h(m)

T , (6)

where Wa ∈ Rh∗h is a trained projection matrix; ua ∈ Rh is a trained parameter
vector. All the parameters, Wa and ua, in the attention model are denoted as
Θ3.

In the attention model, we first compute a hidden representation z
(m)
T of

the last hidden state h
(m)
T based on a one-layer neural network by Equation 4.

After obtaining all the M hidden representations, z
(1)
T , . . . , z

(M)
T , we apply the



softmax function to calculate the weight of each hidden state α
(m)
T by Equation

5. Finally, we compute the user embedding sT as the weighted sum of the M
hidden states by Equation 6. The advantage of the attention model is that it
can dynamically learn a weight of each aspect according to its relatedness with
the user class (e.g., vandal or benign).

We use the user embedding sT to predict P (ŷ|sT ), i.e., the probability of user
u belonging to each class k based on the softmax function shown in Equation
2. We adopt the standard cross-entropy loss function (Equation 3) to train our
M-LSTM model.

Algorithm 1 shows the pseudo-code of M-LSTM training. Given a training
dataset D that contains edit sequences and class labels of N users, we first
construct the M aspects of edit sequences for each user. After initializing the
parameters, Θ1, Θ2, and Θ3, in M-LSTM, in each running, we compute the M
last hidden states by LSTM networks (Line 8). Then, we adopt the attention
model to combine the M hidden states to the user embedding (Line 9). Finally,
we update the parameters of M-LSTM by using the user embedding to predict
the user label (Line 10). The parameters of M-LSTM are optimized by Adadelta
[37] with the back-propagation.

Algorithm 1: Multi-source LSTM Training

Inputs : D = {(eu, yu);u = 1, · · · , N}
Maximum training epoch Epoch

Outputs: Well-trained parameters Θ1, Θ2, Θ3

1 foreach user u in D do

2 construct M aspect sequences x(m) (m = 1, . . . ,M) from the edit sequence
eu;

3 end
4 initialize parameters Θ1, Θ2, Θ3 in M-LSTM;
5 j ← 0;
6 while j < Epoch do
7 foreach user u in D do

8 compute h
(m)
T (m = 1, . . . ,M) on M sequences of aspect vectors;

9 compute the user embedding sT by the attention model (Eq. 4, 5, 6) on
M last hidden states;

10 optimize the parameter Θ1, Θ2, Θ3 in M-LSTM based on the loss
function shown in Eq. 3 with Adadelta.

11 end
12 j ← j + 1;

13 end

M-LSTM for Vandal Early Detection Our trained M-LSTM model can
then be used to predict whether a new user v is vandal or benign given his edit
sequence ev = (ev1 , · · · , evt , · · · ). The upper-left region of Figure 2 shows our
M-LSTM based vandal early detection. At each step t, we first derive its M



aspect sequences from the user’s edit sequence till the step t. The hidden states
are updated with the new input evt . Thus, they are able to capture all user’s
edit aspects until the t-th step. We then adopt the attention model shown in
Equations 4, 5, and 6 (replacing all subscript T with t) to calculate the user
embedding st. The user embedding st captures all the user’s edit information
till the step t. Then, we can use the classifier to predict the probability P (ŷ|st)
of the user to be a vandal based on st. We set a threshold τ to evaluate whether
the user is vandal. When P (ŷ|st) > τ , the user is labeled as vandal.

4 Experiments

We conduct our evaluation on UMDWikipedia dataset [15]. This dataset contains
information of around 770K edits from Jan 2013 to July 2014 (19 months) of
17105 vandals and 17105 benign users. We focus on identifying the user behaviors
on the Wikipedia articles. We remove those edits on meta pages (i.e., with titles
containing “User:”, “Talk:”, “User talk:”, “Wikipedia:”) because they do not
cause damages.

For each edit, we extract three aspects, article title, article categories, and
revert status. We choose these three aspects because both the title and categories
capture the topic information of the edited article and revert status (reported
by bots) indicates whether the edit is good or bad. It is imperative to use them
to derive user embeddings and then predict whether users are vandal or benign.

We represent article titles and categories to their title embeddings and cat-
egory embeddings based on word embeddings. Specifically, we first map each
word in the titles and categories to its word embedding and then adopt average
operation over the word embeddings to get the title embeddings and category
embeddings, respectively. The title embeddings and category embeddings reflect
the hidden features about the pages. We use the off-the-shelf pre-trained word
embeddings 6 provided by [25]. These word embeddings are widely used and
have been shown to achieve good performances on many NLP tasks. We ran-
domly initialize the words which don’t have pre-trained word embeddings. The
dimension of the word embeddings is 50. The dimension of the hidden layer of
the M-LSTM network is 32. The training epoch is 25.

4.1 Vandal Detection

To evaluate the performance of vandal detection, we split the training and testing
dataset chronologically. We use the first 9 months of users as the training dataset
and the last 10 months of users as the testing dataset. The training dataset has
8620 users and the testing dataset has 10418 users. We report the mean values
of 10 different runs.

Table 1 shows the precision, recall, F1 and accuracy for vandal detection with
different thresholds. Precision indicates the ratio of vandals who are correctly

6 http://nlp.stanford.edu/projects/glove/



Table 1: Experimental results on precision, recall, F1, and accuracy of vandal detection
with different thresholds

τ Precision Recall F1 Accuracy

0.5 88.35% 96.67% 92.32% 91.33%

0.6 88.69% 96.01% 92.20% 91.24%

0.7 89.31% 94.85% 92.00% 91.10%

0.8 90.36% 92.27% 91.31% 90.52%

0.9 93.13% 74.10% 82.53% 83.09%

detected. Recall indicates the ratios of vandals who are correctly detected from
the test dataset. The default threshold for binary classification used in vandal
detection is 0.5, where our model achieves the best performance. We can also
observe that the model achieves good performances of vandal detection with
different thresholds τ from 0.5 to 0.8. Meanwhile, with increasing τ , the precision
increases accordingly while the recall decreases, which indicates with a higher
threshold, the model can detect vandal more accurately but can mis-classify the
vandals as benign users. Overall, the F1 and accuracy decease significantly at
the 10−4 level with t-tests while the threshold τ > 0.6.

We further compare our results with the VEWS approach [15]. The VEWS
approach uses a set of hand-crafted features to detect vandals. When incor-
porating the revision status information, the VEWS can achieve around 90%
classification accuracy. Our M-LSTM achieves better accuracy on vandal detec-
tion. More importantly, our M-LSTM does not need to design dozens of features
to predict vandals. Hence our model can be easily extended to identify vandals
from other crowdsourcing knowledge bases like Wikidata.

4.2 User Embeddings

As each user has different edits and each edit has many different aspects, it is
challenging to derive users’ edit patterns. Our M-LSTM derives user embed-
dings based on user edits. As user embeddings capture user edit behaviors, they
can then be used to differentiate between benign users and vandals and detect
potential collaborative vandals.
Visualization We randomly select user embeddings of 3000 users and map them
to a two-dimensional space based on t-SNE approach [18]. Figure 3 shows the
visualization plot of user embeddings from M-LSTM. We observe that the benign
users and vandals are clearly separated in the projected space. This indicates the
user embeddings successfully capture the information whether a user is benign
or vandal. Hence, they can be used for vandal detection.
Clustering of User Embedding In this experiment, we adopt the classic DB-
SCAN algorithm [7] to cluster user embeddings. We set the maximum radius of
the neighborhood ε = 0.05 and the minimum number of points minPts = 3.
DBSCAN produces 211 clusters. Among them, 139 clusters contain only vandals
and the total number of vandals is 502 whereas 46 clusters contain only benign



Fig. 3: Visualization of 3000 users in the dataset. Color of a node indicates the type of
the user. Red: “Vandals”, blue:“Benign Users”.

users and the total number of benign users is 495. It indicates the benign users
often form large-size clusters. On the contrary, the vandals usually cluster to
small groups to damage articles. For the rest 26 clusters that contain mixed van-
dals and benign users, there are 17 clusters in which the vandals constitute the
majority and 9 clusters in which the benign users constitute the majority. Sim-
ilarly, the 17 (vandal-majority) clusters are small with only 52 vandals whereas
there are 3663 benign users in the 9 (benign-majority) clusters. Embeddings of
benign users are closer to each other than that of vandals, which can also be ob-
served in Figure 3. We conclude that “Benign users are much more alike; every
vandal vandalizes in its own way.”

When setting the maximum radius of the neighborhood ε = 0 and the mini-
mum number of points minPts = 2, DBSCAN produces 701 groups containing
1687 user embeddings. Note that under this setting all embeddings within the
same group are exactly the same. Among them, 575 groups only contain vandals
and the total number of vandals is 1396 whereas 68 groups only contain benign
users and the total number of benign users is 144. The largest vandal group
contains 13 vandals and the largest benign group contains 17 benign users.

Table 2 shows three examples of potential collaborative vandal groups. In
Row 1, the group has 8 vandals who attacked the same page consecutively
within a short time window. In Row 2, the group has three vandals who at-
tacked one same page on different days. Because all these vandals were blocked
after revising the page, these vandals have high chance to be controlled by a
malicious user or group and aim to vandalize the specific page. In Row 3, we
show a vandal group containing five vandals. All the five vandals edited the same
two pages, “Shakugan no Shana” and “The Familiar of Zero”, which are both
Japanese light novels, consecutively within a short time window. These three
examples demonstrate one advantage of our M-LSTM, i.e., detecting potential
collaborative vandals with different behavior patterns.

In Table 3, we further show article titles edited by three pairs of vandals. Each
pair of vandals are closed to each other in the embedding space. The first row



Table 2: Three example of potential collaborative vandal groups. The vandals of each group damage
the same page(s). Group 1 damages the page “List of The X Factor finalists (U.S. season 2)” in
2013-01-05 within a short time window. Group 2 damages the page “Niels Bohr” on different days.
Group 3 damages the two pages, “Shakugan no Shana” and “The Familiar of Zero”, consecutively
in 2014-04-18 within a short time window.

Group ID User ID Page ID Revision Time

Group 1
2013-01-05

4203021

37310371

02:36:32
4203016 02:42:02
4203009 02:42:55
4203006 02:44:58
4202998 02:45:32
4203002 02:47:12
4202988 02:52:12
4202986 02:56:21

Group 2
4584127

21210
2013-10-04

4597541 2013-10-23
4939865 2014-01-08

Group 3
2014-04-18

5063994
2548832 21:33:51
5982921 21:34:07

5063996
2548832 21:35:53
5982921 21:35:53

5063998
2548832 21:45:06
5982921 21:45:28

5064002
2548832 21:47:21
5982921 21:47:29

5064006
2548832 21:48:56
5982921 21:49:01

shows that two vandals damage almost the same pages, which indicates vandals
who edit the same pages are close to each other. The second row shows pages
edited by two vandals have common words in titles although the title names are
different. This indicates our M-LSTM can discover the semantic collaborative
behaviors on pages based on user embeddings. The last row shows that our M-
LSTM can further identify vandals who damage the pages with similar subject
areas although there are no any common words in the titles. This example shows
the usefulness of incorporating page category information in our M-LSTM. All
above examples demonstrate that users who are closed in the low-dimensional

Table 3: Three pairs of vandals and their edited page titles. Each pair has similar
embeddings based on the cosine similarity.

Vandal IDs Page Title Page Title

4266603
&

4498466

Live While We’re Young,
What Makes You Beautiful,

Up All Night (One Direction album),
Take Me Home (One Direction album)

Live While We’re Young,
Best Song Ever (song),

What Makes You Beautiful,
Up All Night (One Direction album),

Take Me Home (One Direction album)

4422121
&

4345947

Super Mario 3D World, Super Mario
Galaxy, Sonic Lost World, Pringles,

Action Girlz Racing,
Data Design Interactive

Super Mario World, Super Mario World 2:
Yoshi’s Island, Super Mario Bros. 3,

Virtual Boy, Nintendo DS,
Kirby Super Star, Yogurt

5032888
&

4592537

Matthew McConaughey, Maggie Q, Theo James,
Theo James, Dexter (TV series), Laker Girls,

Bayi Rockets, Arctic Monkeys,
Dulwich College Beijing

Nicolas Cage, Alan Carr,
Liam Neeson, Dale Winton,

Craig Price (murderer), Manuel Neuer



user embedding space have similar edit patterns. Therefore, analyzing user em-
beddings can help capture and understand collaborative vandal behaviors.

4.3 Vandal Early Detection

Our vandal early detection is achieved after each edit is submitted. Although our
M-LSTM exploits revert status of the edit, we emphasize that the revert status is
inspected by the ClueBot NG in a real time manner. Hence, our M-LSTM can be
deployed for real time vandal detection. We evaluate the vandal early detection
on the 6427 users who have at least two edits in the testing dataset. Table 4
shows the precision, recall and F1 of our M-LSTM on vandal early detection.
We vary the threshold τ from 0.5 to 0.9. Similar to the results of vandal detection
shown in Table 1, with increasing τ , a classifier with a higher threshold has more
confidence about the prediction, resulting in a higher precision. On the contrary,
the recall decreases with the increasing of τ because fewer users will be marked
as vandals. The F1 score increases significantly at the 0.005 level with τ > 0.6
and reaches the maximum with τ = 0.9. However, comparing with the results
of vandal detection, the vandal early detection has a lower precision but much
higher recall. This indicates that we lose some precision but achieve big recall
when using partial edit information to do early vandal detection.

Table 4 further shows the average number of edits before the vandals were
blocked by the administrators and the ratio of vandals who can be early detected
over the whole testing dataset. We can observe that the average number of
edits and the ratio of early detected vandals both have a significant decreasing
while the threshold τ = 0.9. Note that the ratios of early detected vandals with
thresholds from 0.5 to 0.8 are only a little lower than the recall values, which
indicates that most of the vandals who are correctly detected are early detected.
Overall, setting threshold τ = 0.8 will achieve a balance performance between
vandal early detection and accurate prediction.

Table 4: Experimental results on precision, recall and F1 of vandal early detection, the
average number of edits before the vandals are blocked, and the ratio of vandals who
are early detected.

τ Precision Recall F1 # of Edits % of Early Detected

0.5 84.10% 99.07% 90.97% 3.50 97.35%

0.6 84.96% 98.99% 91.44% 3.48 96.87%

0.7 85.81% 98.82% 91.86% 3.41 95.94%

0.8 86.88% 98.76% 92.44% 3.33 93.34%

0.9 89.89% 98.34% 93.93% 2.48 72.32%



5 Conclusion and Future Work

In this paper, we have developed a multi-source LSTM model to encode the user
behaviors to user embeddings for Wikipedia vandal detection. The M-LSTM
is able to simultaneously learn different aspects of user edit information, thus
user embeddings accurately capture the different aspects of user behaviors. Our
M-LSTM achieves the state-of-the-art results on vandal detection. Furthermore,
we show that user embeddings are able to identify collaborative vandal groups
with various patterns. Different from existing works which require a list of hand-
designed features, our M-LSTM can automatically learn user embeddings from
user edits. The user embeddings can be used for a variety of data mining tasks
such as classification, clustering, outlier analysis, and visualization. Our empiri-
cal evaluation has demonstrated its potential for analyzing collaborative vandals
and early vandal detection.

In the future, we plan to incorporate into our M-LSTM more information
about user edits, e.g., user-user relations and hyperlink relations among articles.
These relations are modeled as graphs and can be naturally incorporated into M-
LSTM by using network embedding approaches [26,30]. We also plan to conduct
comprehensive evaluations on collaborative vandal detection.
Repeatability. Our software together with the datasets used in this paper are
available at https://bitbucket.org/bookcold/vandal_detection.

Acknowledgments

The authors would like to thank anonymous reviewers for their valuable com-
ments and suggestions. The authors acknowledge the support from the 973 Pro-
gram of China (2014CB340404), the National Natural Science Foundation of
China (71571136), and the Research Projects of Science and Technology Com-
mission of Shanghai Municipality (16JC1403000, 14511108002) to Shuhan Yuan
and Yang Xiang, and from National Science Foundation (1564250) to Panpan
Zheng and Xintao Wu. This research was conducted while Shuhan Yuan visited
University of Arkansas.

References

1. Adler, B.T., de Alfaro, L.: A content-driven reputation system for the wikipedia.
In: WWW. pp. 261–270 (2007)

2. Adler, B.T., Alfaro, L.d., Mola-Velasco, S.M., Rosso, P., West, A.G.: Wikipedia
vandalism detection: Combining natural language, metadata, and reputation fea-
tures. In: CICLing. pp. 277–288 (2011)

3. Akoglu, L., McGlohon, M., Faloutsos, C.: oddball: Spotting anomalies in weighted
graphs. In: PAKDD. pp. 410–421 (2010)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. TPAMI 35(8), 1798–1828 (2013)



6. Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heteroge-
neous network embedding via deep architectures. In: KDD (2015)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD. pp. 226–231
(1996)

8. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Exploit-
ing burstiness in reviews for review spammer detection. In: ICWSM. pp. 175–184
(2013)

9. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: ICASSP. pp. 6645–6649 (2013)

10. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD
(2016)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

12. Heindorf, S., Potthast, M., Stein, B., Engels, G.: Vandalism detection in wikidata.
In: CIKM. pp. 327–336 (2016)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

14. Javanmardi, S., McDonald, D.W., Lopes, C.V.: Vandalism detection in wikipedia:
A high-performing, feature-rich model and its reduction through lasso. In: Wik-
iSym. pp. 82–90 (2011)

15. Kumar, S., Spezzano, F., Subrahmanian, V.: Vews: A wikipedia vandal early warn-
ing system. In: KDD. pp. 607–616 (2015)

16. Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classifica-
tion. In: ACL (2016)

17. Lim, E.P., Nguyen, V.A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product review
spammers using rating behaviors. In: CIKM. pp. 939–948 (2010)

18. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. JMLR 9, 2579–2605
(2008)

19. McKeown, K., Wang, W.: got you!: Automatic vandalism detection in wikipedia
with web-based shallow syntactic-semantic modeling. In: COLING. pp. 1146–1154
(2010)

20. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (2013)

21. Mola-Velasco, S.M.: Wikipedia vandalism detection through machine learning: Fea-
ture review and new proposals. arXiv:1210.5560 [cs] (2012)

22. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.S.: What yelp fake review
filter might be doing? In: ICWSM. pp. 409–418 (2013)

23. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages
through content analysis. In: WWW. pp. 83–92 (2006)

24. Papadimitriou, P., Dasdan, A., Garcia-Molina, H.: Web graph similarity for
anomaly detection. Journal of Internet Services and Applications 1(1), 19–30 (2010)

25. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP. pp. 1532–1543 (2014)

26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: KDD. pp. 701–710 (2014)

27. Spirin, N., Han, J.: Survey on web spam detection: Principles and algorithms.
SIGKDD Explor. Newsl. 13(2), 50–64 (2011)

28. Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C.: Neighborhood formation and
anomaly detection in bipartite graphs. In: ICDM. pp. 1–8 (2005)



29. Tang, J., Qu, M., Mei, Q.: Pte: Predictive text embedding through large-scale
heterogeneous text networks. In: KDD (2015)

30. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: WWW. pp. 1067–1077 (2015)

31. West, A.G., Kannan, S., Lee, I.: Detecting wikipedia vandalism via spatio-temporal
analysis of revision metadata? In: EUROSEC. pp. 22–28 (2010)

32. Xie, S., Wang, G., Lin, S., Yu, P.S.: Review spam detection via temporal pattern
discovery. In: KDD. pp. 823–831 (2012)

33. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: NAACL. pp. 1480–1489 (2016)

34. Ying, X., Wu, X., Barbará, D.: Spectrum based fraud detection in social networks.
In: Proceedings of the 27th International Conference on Data Engineering, ICDE
2011, April 11-16, 2011, Hannover, Germany. pp. 912–923 (2011)

35. Yuan, S., Wu, X., Li, J., Lu, A.: Spectrum-based deep neural networks for fraud
detection. CoRR abs/1706.00891 (2017)

36. Yuan, S., Wu, X., Xiang, Y.: SNE: signed network embedding. In: Advances in
Knowledge Discovery and Data Mining - 21st Pacific-Asia Conference, PAKDD
2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part II. pp. 183–195 (2017)

37. Zeiler, M.D.: Adadelta: An adaptive learning rate method. arXiv:1212.5701 [cs]
(2012)

38. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: ECCV. pp. 818–833 (2014)


