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Abstract. We introduce Poisson Matrix Factorization with Content
and Social trust information (PoissonMF-CS), a latent variable prob-
abilistic model for recommender systems with the objective of jointly
modeling social trust, item content and user’s preference using Poisson
matrix factorization framework. This probabilistic model is equivalent to
collectively factorizing a non-negative user–item interaction matrix and
a non-negative item–content matrix. The user–item matrix consists of
sparse implicit (or explicit) interactions counts between user and item,
and the item–content matrix consists of words or tags counts per item.
The model imposes additional constraints given by the social ties be-
tween users, and the homophily effect on social networks – the tendency
of people with similar preferences to be socially connected. Using this
model we can account for and fine-tune the weight of content-based
and social-based factors in the user preference. We develop approxi-
mate variational inference algorithm and perform experiments compar-
ing PoissonMF-CS with competing models. The experimental evaluation
indicates that PoissonMF-CS achieves superior predictive performance
on held-out data for the top-M recommendations task. Also, we observe
that PoissonMF-CS generates compact latent representations when com-
pared with alternative models while maintaining superior predictive per-
formance.

Keywords: Probabilistic Matrix Factorization, Non-negative Matrix Fac-
torization, Hybrid Recommender Systems, Poisson matrix factorization

1 Introduction

Recommender systems have proven to be a valuable component in many applica-
tions of personalization and Internet economy. Traditional recommender systems
try to estimate a score function mapping each pair of user and item to a scalar
value using the information of previous items already rated or interacted by the
user [1]. Recent methods have been successful in integrating side information as
content of the item, user context, social network, item topics, etc. For this pur-
pose a variety of features should be taken into consideration, such as the routine,
the geolocation, spatial correlation of certain preferences, mood and sentiment



analysis, as well as social relationships such as “friendship” to others users or
“belonging” to a community in a social network [2]. In particular, a rich area of
research has explored the integration of topic models and collaborative filtering
approaches using principled probabilistic models [3–5]. Another group of models
has been developed to integrate social network information into recommender
systems using user–item ratings with extra dependencies [6] or constraining and
regularizing directly the user latent factors with social features [7, 8]. Finally,
some models have focused on the collective learning of both social features and
content features, constructing hybrid recommender systems [5, 9, 10].

Our contribution is situated within all these three groups of efforts: we pro-
pose a probabilistic model that generalizes both previous models by jointly mod-
eling content and social factors in the preference model applying Poisson-Gamma
latent variable models to model the non-negativeness of the user–item ratings
and induce sparse non-negative latent representation. Using this joint model we
can generate recommendations based on the estimated score of non-observed
items. In this article, we formulate the problem (Section 1.1), describe the pro-
posed model (Section 3), present the variational inference algorithm (Section 4)
and discuss the empirical results (Section 5). Our results indicate improved per-
formance when compared to state-of-the-art methods including Correlated Topic
Regression with Social Matrix Factorization (CTR-SMF) [5].

1.1 Problem formulation

Consider that given a set of observations of user–item interactions Rtrain =
{(u, d,Rud)}, with |Rtrain| = Nobs � U × D (U is the number of users and D
the number of documents), using additional item content information and user
social network, we aim to learn a function f that estimates the value of each
user–item interactions for all pairs of user and items Rcomplete = {(u, d, f(u, d))}.
In general to solve this problem we assume that users have a set of preferences,
and (using matrix factorization) we model these preferences using latent vectors.

Therefore, we have the documents (or items) set D of size |D| = D, vocabu-
lary set V of size |V| = V , users set U of size |U| = U , the social network given
by the set of neighbors for each user {N(u)}u∈U . So, given the partially observed
user–item matrix with integer ratings or implicit counts R = (Rud) ∈ NU×D,
the observed document–word count matrix W = (Wdv) ∈ ND×V , and the user

social network {N(u)}u∈U , we need to estimate a matrix R̃ ∈ NU×D to com-
plete the user–item matrix R. Finally, with the estimated matrix we can rank
the unseen items for each user and make recommendations.

2 Related work

Collaborative Topic Regression (CTR): CTR [3] is a probabilistic model com-
bining topic modeling (using Latent Dirichlet Allocation) and probabilistic ma-
trix factorization (using Gaussian likelihood). Collaborative Topic Regression



with Social Matrix Factorization (CTR-SMF) [5] builds upon CTR adding so-
cial matrix factorization, creating a joint model Gaussian factorization model
with content and social side information. Limited Attention Collaborative Topic
Regression (LA-CTR) [9], is another approach with which the authors propose
a joint model based on CTR integrating behavioral mechanism of attention. In
this case, the amount of attention the user has invested in the social network
is limited, and there is a measure of influence implying that the user may fa-
vor some friends more than others. In [10], the authors propose a CTR model
seamlessly integrated item–tags, item content and social network information.
All the models mentioned above combine in some degree LDA with Gaussian
based matrix factorization for recommendations. Thus the time complexity for
training those models is dominated by LDA complexity, making them difficult to
scale. Also, the combination of LDA and Gaussian matrix factorization in CTR
is a non-conjugate model that is hard to fit and difficult to work with sparse
data.

Poisson Factorization: the basic Poisson factorization is a probabilistic model
for non-negative matrix factorization based on the assumption that each user–
item interaction Rui can be modelled as a inner product of a user K dimen-
sional latent vector Uu and item latent vector Vi representing the unobserved
user preferences and item attributes [11], so that Rui ∼ Poisson(UT

uVi). Poisson
factorization models for recommender systems have the advantage of princi-
pled modeling of implicit feedback, generating sparse latent representations, fast
approximate inference with sparse matrix (the likelihood depends only on the
consumed items) and improved empirical results compared with the Gaussian-
based models [12, 11]. Nonparametric Poisson factorization model (BNPPF) [12]
extends basic Poisson factorization by drawing user weights from a Gamma
process. The latent dimensionality in this model is estimated from the data, ef-
fectively avoiding the ad hoc process of choosing the latent space dimensionality
K. Social Poisson factorization (SPF) [6] extends basic Poisson factorization to
accommodate preference and social based recommendations, adding a degree
of trust variable and making all user–item interaction conditionally dependent
on the user friends. With collaborative topic Poisson factorization (CTPF) [4],
shared latent factors are utilized to fuse recommendation with topic model using
Poisson likelihood and Gamma variables for both.

Non-negative matrix and tensor factorization using Poisson models: Pois-
son models are also successfully utilized in more general models such as tensor
factorization and relational learning, particularly where it can use count data
and non-negative factors. In [13], the authors propose a generic Bayesian non-
negative tensor factorization model for count data and binary data. In [14], the
authors explore the idea of adding constraints between the model variables us-
ing side information with hierarchical information, while the approach in [15]
uses graph side information jointly modeled with topic modeling with Gamma
process – a joint non-parametric model of network and documents.



3 Poisson Matrix Factorization with Content and Social
trust information (PoissonMF-CS)

The proposed model PoissonMF-CS (see Figure 1) is an extension and general-
ization of previous Poisson models, combining social factorization model (social
Poisson factorization – SPF) [6], and topic based factorization (collaborative
topic Poisson factorization – CTPF) [4].

The main idea is to employ shared latent Gamma factors for topical prefer-
ence and trust weight variables in the user social network, combining all factors
in the rate of a Poisson likelihood of the user–item interaction. We model both
sources of information having an additive effect on the observed user–item in-
teractions and add two global multiplicative weights for each group of latent
factors. The intuition behind the additive effect of social trust is that users tend
to interact with items presented by their peers, so we can imagine a mechanism
of “peer pressure” operating, where items offered through the social network
have a positive (or neutral) influence on the user. In other words, we believe
there is a positive social bias more than an anti-social bias, and we factor this
in PoissonMF-CS model.

In the case of Poisson models, this non-negative constraint results in sparse-
ness in the latent factors and can help avoid over-fitting (in comparison the
Gaussian-based models[11, 12]). Gamma priors on the latent factors, and the
fact that the latent factors can only have a positive or a zero effect on the final
prediction, induce sparse latent representations in the model. Hence, in the in-
ference process we adjust a factor that decreases the model likelihood by making
its value closer to zero.

3.1 Generative model

Rud λS

ηuk

Rid τui

εdkθdk

λC

Wdv

βvk

i ∈ N(u)

u ∈ U
d ∈ D

k ∈ K

v ∈ V

Fig. 1. Plate diagram for PoissonMF-CS model



In this model, Wdv is a counting variable for the number of times word v
appears in document d, βv is a latent vector capturing topic distribution of
word v and θd is the document–topic intensity vector, both with dimensionality
K. Count variable Wdv is parametrized by the linear combination of these two
latent factors θTdβv. The document–topic latent factor θd influences also the
user–document rating variable Rud. Each user has a latent vector ηu represent-
ing the user–topic propensity, which interacts with the document topic intensity
factor θd and document topic offset factor εd, resulting in the term ηTu θd+ηTu εd.
Here, ηTu εd captures the baseline matrix factorization, while ηTu θd connects the
rating variable with the content-based part of the model (word–document vari-
able Wdv). The trust factor τui between user u to user i is equal to zero for all
users that are not connected in the social network ( τui > 0 ⇔ i ∈ N(u)). This
trust factor adds dependency between social connected users: the user–document
rating Rud is influenced by the average rating to item d given by friends of user
u in the social network, weighted by the trust user u assigns to his friends
(
∑
i∈N(u) τuiRid). We model this social dependency using a conditional specified

model, as in [6]. The latent variables λC and λS are weight variables added in
the model to capture and control the general weight of the content and social
factors. These variables allow us to infer the importance of content and social
factors according to the dataset or domain of usage. Also, instead of estimating
these weights from the observed data, we may set λC and λS to constant val-
ues, thus controlling the importance of content and social parts of the model.
Specifically if we set λC = 0 and λS = 1 we obtain the SPF model, while setting
λC = 1 and λS = 0 result in CTPF, and λC = 0 and λS = 0 is equivalent to the
simple Poisson matrix factorization without any side information [11].

Now we present the complete generative model assuming documents (or
items) set D of size |D| = D, vocabulary set V of size |V| = V , users set U
of size |U| = U , the user social network given by the set of neighbors for each
user {N(u)}u∈U D documents, and K latent factors (topics) (with an index set
K).

1. Latent parameter distributions:
(a) for all topics k ∈ K:

– for all words v ∈ V: βvk ∼ Gamma(a0β , b
0
β)

– for all documents d ∈ D: θdk ∼ Gamma(a0θ, b
0
θ) and εdk ∼ Gamma(a0ε , b

0
ε)

– for all users u ∈ U : ηuk ∼ Gamma(a0η, b
0
η)

• for all user i ∈ N(u): τui ∼ Gamma(a0τ , b
0
τ )

(b) Content weight: λC ∼ Gamma(a0C , b
0
C)

(c) Social weight: λS ∼ Gamma(a0S , b
0
S)

2. Observations probability distribution:
(a) for all observed document–word pairs dv :

Wdv|βv,θd ∼ Poisson(βTv θd)

(b) for all observed user–document pairs ud :

Rud|RN(u),d, ηu, εd, θd ∼ Poisson(λCη
T
u θd + ηTu εd + λS

∑
i∈N(u)

τuiRid)



4 Inference

First, we add a set of auxiliary latent Poisson variables to facilitate the posterior
inference of the model. By doing so, the extended model will be complete conju-
gate, and consequently have analytical equations for the complete conditionals
and variational updates [16]. In Appendix A we show that those auxiliary vari-
ables can be seen as by-product of a lower bound on the expected value of the
log sum of the latent random variables. Variable Ydv,k represent a topic specific
latent count for a word–document pair, so that the observed word–document
counts is a sum of the latent counts (a property of the Poisson distribution) 1.
We can perform a similar modification for the user–item counts, splitting the
latent terms of Rud rate into two groups of topic specific latent count allocation
variables: ZMud,k for the item content part, ZNud,k for the collaborative filtering

part and ZSud,i for the social trust part (for this part, the intuitive explanation
for the latent dimension is the idea of friend specific allocation of trust). The
sum of all those latent counts is the observed user–item interaction count variable
Rud.

Ydv,k|βvk, θdk ∼ Poisson(βvkθdk)
ZMud,k|λC , ηuk, θdk ∼ Poisson(λCηukθdk)

ZNud,k|ηuk, εdk ∼ Poisson(ηukεdk)

ZSud,i|λS , τui, Rid ∼ Poisson(λSτuiRid)

(1)

with
∑
k

Ydv,k = Wdv, and
∑
k

ZMud,k + ZNud,k +
∑

i∈N(U)

ZSud,i = Rud.

The inference problem consists on the estimation of the posterior distribution
of the latent variables given the observed rating R, the observed document–word
counts W , and the user social network {N(u)}u∈U , in other words, computing

p(Θ|R,W , {N(u)}u∈U ),

where Θ = {β, θ, η, ε, τ, y, z, λC , λS} is the set of all latent variables. The exact
computation of this posterior probability is intractable for any practical scenario,
so we need approximation techniques for efficient parameter learning. In our
case, we apply variational techniques to derive the learning algorithm. As an
intermediate step towards the variational inference algorithm, we also derive
the full conditional distribution for each latent variable. The full conditional
distribution of each latent variable is also useful as update equations for Gibbs
sampling, meaning that we could use the resulting equations to implement a
sampling-based approximation. However, sampling methods are hard to scale
and usually requires more memory, so as a design choice for the implementation
of the learning algorithm, we refrained from applying the Gibbs sampling method
and focus on the variational inference.

1 The change consist in assigning a new Poisson variable to each sum-term in the
latent rate of the Poisson likelihood, so if S ∼ Poisson(

∑
iXi), we add variables

Si ∼ Poisson(Xi), and by the sum property of Poisson random variable S =
∑
i Si ∼

Poisson(
∑
iXi)



In the next sections, we present the full conditional distribution of each of
the latent variables in Section 4.1, and show the resulting update equation for
the variational parameters in Section 4.2.

4.1 Full conditional distribution

The full conditional distribution of each of the latent variables is the distribution
of a variable given all the other variables in the model, except the variable that
we are considering. Given a set of indexed random variables Xk, we use the
notation p(Xk|X−k) (where X−k means all the variables Xi such that i 6= k) to
represent the full conditional distribution. Given the factorized structure of the
model we can simplify the conditional set to the Markov blanket of the node
we are considering (children nodes and co-parents nodes)2 [16]. For conciseness,
we show the derivations only for one Gamma latent variables and one Poisson
latent count variable.

– Gamma distributed variables: We demonstrate how to obtain the full
conditional distribution for Gamma distributed variable θdk, for the remain-
ing Gamma distributed variables we only present the end result without the
intermediate steps.

p(θdk|∗) = p(θdk|MarkovBlanket(θdk))

∝ p(θdk)
∏V
v=1 p(Ydv,k|βvk, θdk)

∏U
u=1 p(Z

M
ud,k|λC , ηuk, θdk)

∝ θa
0
θ−1
dk e−b

0
θθdk

∏
v θ

Ydv,k
dk e−βvkθdk

∏
u θ

ZMud,k
dk e−λCηukθdk

∝ θa
0
θ+

∑
v Ydv,k+

∑
u Z

M
ud,k−1

dk e−θdk(b
0
θ+

∑
v βvk+λC

∑
u ηuk)

(2)

Normalizing equation Eq. 2 over θdk we obtain the pdf of a Gamma variable
with shape a0θ+

∑
v Ydv,k+

∑
u Z

M
ud,k and rate b0θ+

∑
v βvk+λC

∑
u ηuk. The

final solution is written in Eq. 3. Also, notice that because of the way the
model is structured all other Gamma latent variable have similar equations,
the difference being the set of variables in the Markov blanket.

θdk|∗ ∼ Gamma(a0θ +
∑
v Ydv,k +

∑
u Z

M
ud,k, b

0
θ +

∑
v βvk + λC

∑
u ηuk)

βvk|∗ ∼ Gamma(a0β +
∑
d Ydv,k, b

0
β +

∑
d θdk)

ηuk|∗ ∼ Gamma(a0η +
∑
d Z

M
ud,k + ZNud,k, b

0
η + λC

∑
d θdk +

∑
d εdk)

εdk|∗ ∼ Gamma(a0ε +
∑
u−ZNud,k, b0ε +

∑
u ηuk)

τui|∗ ∼ Gamma(a0τ +
∑
d Z

S
ud,i, b

0
τ + λS

∑
dRid)

λC |∗ ∼ Gamma(aC +
∑
u,d,k Z

M
ud,k, bC +

∑
u,d,k ηukθdk)

λS |∗ ∼ Gamma(aS +
∑
u,d,i Z

S
ud,i, bS +

∑
u,d,i τuiRid)

(3)
– Multinomial distributed (auxiliary) variables: looking at the Markov

blanket of Ydv we obtain:

p(Ydv|∗) ∝
∏K
k=1 p(Ydv,k|βvk, θdk) =

∏K
k=1 Poisson(Ydv,k|βvkθdk)

∝
∏K
k=1

(βvkθdk)
Ydv,k

Ydv,k!

(4)

2 We use the notation MarkovBlanket(X) to denote the Markov blanket of a variable
X – the set of children and co-parents nodes of variable X in the graphical model



Given that we know that
∑
k Ydv,k = Wdv, this functional form is equiva-

lent to the pdf of a Multinomial distribution with parameter probabilities
proportional to βvkθdk.

Ydv|∗ ∼ Mult(Wdv;φdv) with φdv,k =
βvkθdk∑
k βvkθdk

(5)

Similarly, Zud is a Multinomial with parameters proportional to the parent
nodes of Zud. For convenience in the previous section, we split Zud in three
blocks of variables and parameters Zud = [ZMud,Z

N
ud,Z

S
ud] representing the

different high-level parts of our model. The dimensionality of the first two
blocks is the K, while for the last block is U , resulting that Zud has di-
mensionality 2K + U . Similarly the parameters of the Zud full conditional
Multinomial have a block structure ξud = [ξMud, ξ

N
ud, ξ

S
ud].

Zud|∗ ∼ Mult(Rud; ξud)

with ξud,k =


ξMud,k = λCηukθdk∑

k ηuk(λCθdk+εdk)+λS
∑
i∈N(u) τuiRid

ξNud,k = ηukεdk∑
k ηuk(λCθdk+εdk)+λS

∑
i∈N(u) τuiRid

ξSud,i = λSτuiRid∑
k ηuk(λCθdk+εdk)+λS

∑
i∈N(u) τuiRid

We present in next section how to use these equations to derive a deterministic
optimization algorithm for approximate inference using the variational method.

4.2 Variational inference

Given a family of surrogate distributions q(Θ|Ψ) for the unobserved variables
(latent terms) parametrized by variational parameters Ψ , we want to find an as-
signment of the variational parameters that minimize the KL-divergence between
q(Θ|Ψ) and p(Θ|R,W ) 3,

argmin
Ψ

KL{q(Θ|Ψ), p(Θ|R,W )}.

Then, the optimal surrogate distribution can be used as an approximation the
true posterior. However, the optimization problem using directly the KL di-
vergence is not tractable, since it depends on the computation of the evidence
log p(R,W ). This can be accomplished using Jensen inequality to get lower
bounds on the evidence and changing the optimization objective to this lower
bound – the Evidence Lower BOund (ELBO):

argmin
Ψ

L(Ψ) = Eq[log p(R,W , Θ)− log q(Θ|Ψ)]

3 To simplify the notation, we use the short-handed p(Θ|R,W ) to denote the posterior
distribution p(Θ|R,W , {N(u)}u∈U ). Also, we drop the explicitly notation indicating
the dependency on the social network



Another ingredient in this approximation is the mean field assumption. It con-
sists in assuming that all variables in the variational distribution q(Θ|Ψ) are
mutually independent. As a result the variational surrogate distribution can be
expressed as a factorized distribution of each latent factor (Eq. 7). Another im-
plication is that we can compute the updates for each variational Xi factor using
the complete conditional of the latent factor [16]. Finally, the inference algorithm
consists in iterative updating of variational parameters of each factorized distri-
bution until convergence is reached, resulting in the coordinate ascent variational
inference algorithm based on the following equation:

q(Xi) ∝ exp{Eq[log p(Xi|*)]} (6)

Using Eq. 6, we can take each complete conditional variable that we described
in the previous section and create a respective proposal distribution for the
variational inference. This proposal distribution is in the same family as the full
conditional distribution of the latent variables, meaning that we have a group
of Gamma and Multinomial variables. As long as we update the parameters of
the variational distribution using Eq. 6, it is guaranteed to minimize the KL
divergence between the surrogate variational distribution (Eq. 7) over the latent
variables and the posterior distribution of the model.

q(Θ|Ψ) = q(λC |aλC , bλC )q(λS |aλS , bλS )
∏
u,k,i q(τui|aτui , bτui)q(ηuk|aηuk , bηuk)

×
∏
d,v,k q(εdk|aεdk , bεdk)q(θdk|aθdk , bθdk)q(βvk|aβvk , bβvk)

×
∏
d,v,u q(Zdv|φ∗dv)q(Yud|ξM∗ud , ξ

N∗
ud , ξ

S∗
ud )

(7)
After applying Eq. 6 together with the expected value properties for each

latent variable4, we obtain the following update equations for the variational
parameters.

– Content and social weights:

aλC = aC +
∑
u,d,k Rudξ

M∗
ud,k, bλC = bC +

∑
u,d,k

aηuk
bηuk

aθdk
bθdk

aλS = aS +
∑
uRudξ

M∗
ud,k +

∑
vWdvφ

∗
dv,k, bλS = bS +

∑
u,d,iRid

aτui
bτui

– Content v (topic/tags/etc) parameters:

aβvk = a0β +
∑
dWdvφ

∗
dv,k, bβvk = b0β +

∑
d

aθdk
bθdk

– Item d parameters:

aεdk = a0ε +
∑
uRudξ

N∗
ud,k, bεdk = b0ε +

∑
u

aηuk
bηuk

aθdk = a0θ +
∑
uRudξ

M∗
ud,k +

∑
vWdvφ

∗
dv,k, bθdk = b0θ + Eq[λC ]

∑
u

aηuk
bηuk

+
∑
v

aβvk
bβvk

– User u parameters:

4 Notice that, if q(X) = Gamma(X|aX , bX) (parameterized by shape and rate) , then
Eq[X] = aX

bX
and Eq[logX] = Ψ(aX)− log(bX), where Ψ(.) is the Digamma function.

If q(X) = Mult(R|p), then Eq[Xi] = Rpi.



aηuk = a0η +
∑
dRud(ξ

M∗
ud,k + ξN∗ud,k), bηuk = b0η +

∑
d Eq[λC ]

aθdk
bθdk

+
aεdk
bεdk

aτui = a0τ +
∑
dRudξ

S∗
ud,i, bτui = b0τ + Eq[λS ]

∑
dRid

– item–content dv parameters:

φ∗dv,k ∝ e
Ψ(aβvk)
bβvk

e
Ψ(aθdk)
bθdk

with
∑
k φdv,k = 1

– user–item ud parameters:

ξM∗ud,k ∝ eEq [log λC ] e
Ψ(aηuk)
bηuk

e
Ψ(aθdk)
bθdk

ξN∗ud,k ∝ e
Ψ(aηuk)
bηuk

e
Ψ(aεdk)
bεdk

ξS∗ud,i ∝ eEq [log λS ] e
Ψ(aτui )

bτui
Rid with

∑
k ξ

M∗
ud,k + ξN∗ud,k +

∑
i ξ
S∗
ud,i = 1

Computing the ELBO: The variational updates calculated in the previous
sections are guaranteed to non-decrease the ELBO. However, we still need to
calculate this lower bound after each iteration to evaluate a stopping condition
for the optimization algorithm. We briefly describe a particular lower-bounding
for the ELBO involving the log-sum present in the Poisson rate.

Note also that the surrogate distribution is factorized using the mean field
assumptions (Eq. 7), so we have a sum of terms corresponding to the expected
log probability over the surrogate distribution. The terms comprising the log-
probabilities of the Poisson likelihood display a expected value over a sum of
logarithms of latent variables (for example Eq[log(

∑
k βvkθdk)]), this is a chal-

lenging computation, but we can apply another lower-bound5 and simplify it to
Eq. 8.

Eq[log(
∑
k βvkθdk)] ≥

∑
k φ
∗
dv,k (Eq[log βvk] + Eq[log θdk]])

−
∑
k φ
∗
dv,k log φ∗dv,k

(8)

This same simplification can be done to all Poisson terms independently
because of the mean field assumptions. It is equivalent to using the auxiliary
latent counts. So, for example, using the latent variable Zdv,k, βvk and θdk, the
Poisson term in the ELBO results in Eq. 9.

Eq

[
log p(Zdv)

q(Zdv)

]
=

∑
kWdvφ

∗
dv,k Eq[log(βvkθdk)]

−Eq[βvkθdk]−Wdvφ
∗
dv,k log(φ∗dv,k)− log(Wdv!)

(9)

For the Gamma terms, the calculations are a direct application of ELBO formula
for the appropriate variable. For example, Eq. 10 describes the resulting terms
for βvk.

Eq

[
log p(βvk)

q(βvk)

]
= log

Γ (aβvk )

Γ (a) + a log b+ aβvk(1− log bβvk)

+(a− aβvk) Eq[log βvk]− bEq[βvk]
(10)

5 this lower bound is valid for any φ∗dv,k, with
∑
k φ
∗
dv,k = 1, check Eq. 13 in Ap-

pendix A for details



Recommendations: Once we learn the latent factors of the model from the
observations we can infer the user preference over the set of items using the
expected value of the user–item rating E[Rud] . The recommendation algorithm
ranks the unobserved items for each user according to E[Rud] and recommend to
top-M items. We utilize the variational distribution to efficiently compute E[Rud]
as defined in Eq. 11. This value can be broken down into three non-negative
scores: Eq[ηu]T Eq[εd], representing the “classic” collaborative filtering matching
of users preferences and items features, Eq[λC ] Eq[ηu]T Eq[θd] representing the
content factors contribution and Eq[λS ]

∑
i∈N(u) Eq[τui]Rid the social influence

contribution.

E[Rud] ≈ Eq[ηu]T (Eq[λC ] Eq[θd] + Eq[εd]) + Eq[λS ]
∑

i∈N(u)

Eq[τui]Rid (11)

Complexity and convergence: the complexity of each iteration of the varia-
tional inference algorithm is linear on the number of latent factors K, non-zero
ratings nR, non-zero word-document counts nW , users U , items D, vocabulary
set W and neighbors for each user nS, in other words O(K(nW +nR+nS+U+
D +W )). We have shown that we can obtain closed-form updates for the infer-
ence algorithm, which stems from the fact that the model is fully conjugate and
in the exponential family of distributions. In this setting variational inference
is guaranteed to converge, and we observed in the experiments the algorithm
converging after 20 to 40 iterations.

5 Evaluation

In this section, we analyze the predictive power of the proposed model with a
real world dataset and compare it with state of the art methods.6

Datasets. to be able to compare with the state-of-art method Correlated Topic
Regression with Social Matrix Factorization [5], we conducted experiments using
the hetrec2011-lastfm-2k (Last.fm) dataset [17]. This dataset consists of a set of
user–artists weighted interactions (“artists” is item set), a set of user–artists-tags
and a set of user–user relations7. We process the dataset to create an artist–tags
matrix by summing up all the tags given by all users to a given artist, this matrix
is the item–content matrix in our model. Also, we discard the user–artists weight,
considering a “1” for all observed cases. After the preprocessing, we sample 85%
of the user–artists observation for training, and kept 15% held-out for predictive
evaluation, selecting only users with more than 5 item ratings for the training
part of the split.

6 Our C++ implementation of PoissonMF-CS with some of the experiments will be
available this repository https://github.com/zehsilva/poissonmf_cs

7 The statistics for the dataset are: 1892 users, 17632 artists, 11946 tags, 25434 user–
user connections, 92834 user–items interactions, and 186479 user–tag–items entries
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Fig. 2. Comparison of PoissonMF-CS with alternative models. Each subplot is the
result of running the PoissonMF-CS recommendation algorithm over 30 random splits
of the Hetrec2011-lastfm dataset for a fixed number of latent features K (in this case,
K = {10, 15}). The values for CTR-SMF, CTR, and PMF was taken from [5], and
according to the reported results, they are the best values found after a grid search.

Metric: Given the random splits of training and test, we train our model and
use the estimated latent factors to predict the entries in the testing datasets. In
this setting zero ratings can not be necessarily interpreted as negative, making it
problematic to use the precision metric. Instead, we focus on recall metric to be
comparable with previous work [5] and because the relevant items are available.
Specifically, we calculate the recall at the top M items (recall@M) for a user,
defined as:

recall@M =
number of items the user likes in Top M

total number of items the user likes
(12)

Recall@M from Eq. 12 is calculated for each user, to obtain a single measure for
the whole dataset we average it over all the users obtaining the Avg. Recall@M .

5.1 Experiments

Initially we set all the Gamma hyperparameters to the same values aall
8 and

ball
9 equal to 0.1, while varying the latent dimensionality K. For each value

of K we ran the experiments on 30 multiple random splits of the dataset in
order to be able to generate boxplots of the final recommendation recall. We
compare our results with the reported results in [5] for the same dataset and
with optimal parameters. In this first experiment we let the algorithm estimate
the optimal content weight λC and social weight λS . It is possible to see in Fig 2
that PoissonMF-CS is consistently outperforming by large margin CTR-SMF
and CTR (Fig. 2a), while outperforming other Poisson factorization methods

8 aall = a0β = a0η = a0θ = a0ε = a0τ = aC = aS = 0.1
9 ball = b0β = b0η = b0θ = b0ε = b0τ = bC = bS = 0.1
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Fig. 3. Impact of the number of latent variables (K) parameter on the Av. Recall@M
metric for different number of returned items (M). Each subplot is the result of running
the PoissonMF-CS recommendation algorithm over 30 random splits of the dataset with
K varying in (5,10,15,20,50,100)
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Fig. 4. Evaluation of the impact of content and social weight parameters (in all exper-
iments in this figure K = 10)

(Fig. 2b) by a significant margin (p ≤ 1 · 10−6 in Wilcoxon paired test for each
M). . This may be indicative that both the choice of Poisson likelihood with
non-negative latent factors and the modelling of content and social weights have
positive impact in the predictive power of the model.

Model selection. Fig. 3 shows the resulting predictive performance of PoissonMF-
CS with different values of number of latent factors K in Hetrec2011-lastfm
dataset. We concluded that the optimal choice for K is 15. This result is im-
portant, indicating that the model is generating compact latent representations,
given that the optimal choice of K reported for CTR-SMF in the same dataset
is 200. In Fig. 5 we show the results for the latent variable hyperparameters.
We ran one experiment varying the hyperparameters aall and ball to understand
the impact of these hyperparameters in the final recommendation. We noticed
that the optimal values for different values of M for both hyperparameters are
between 0.1 and 1, a result consistent with the recommendations in the liter-
ature [12, 4, 6] and with the statistical intuition that Poisson likelihood with
Gamma prior with shape parameter a < 1 favour sparse latent representation.
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Fig. 5. Evaluation of the impact of latent Gamma hyperpriors on the recall (in all
experiments in this figure K = 10)

The next experiment was to set the content weight and social weight to
fixed values and evaluate the impact of these weights on the result. In Fig 4 we
can see that the resulting pattern for different values of M is not evident, but
indicates that the resulting recall is less sensitive to change in the content and
social weights parameters than on the hyperparameters aall and ball. This is also
indicative that the importance of social and content factors is not the same at
different points of the ranked list of recommendations.

6 Conclusion

This article describes PoissonMF-CS, a joint Bayesian model for recommenda-
tions integrating three sources of information: item textual content, user social
network, and user–item interactions. It generalizes existent Poisson factorization
models for recommendations by adding both content and social features. Our
experiment shows that the proposed model consistently outperforms previous
Poisson models (SPF and CTPF) and alternative joint models based on Gaus-
sian probabilistic factorization and LDA (CTR-SMF and CTR) on a dataset
containing both content and social side information. These results demonstrate
that joint modeling of social and content features using Poisson models improves
the recommendations, can have scalable inference and generates more compact
latent features. Although the batch variational inference algorithm is already
efficient 10, one future improvement will be the design of Stochastic Variational
Inference algorithm for very large scale inference.
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A A lower bound for Eq[log
∑

kXk]

The function log(·) is a concave, meaning that:

log(px1 + (1− p)x2) ≥ p log x1 + (1− p) log x2
∀p : p ≥ 0

By induction this property can be generalized to any convex combination of xk
(
∑
k pkxk with

∑
k pk = 1 and pk ≥ 0): log

∑
k pkxk ≥

∑
k pk log xk Now using

random variables we can create a similar convex combination by multiplying and
dividing each random variable Xk by pk > 0 and apply the sum of of expectation
property:

Eq[log
∑
kXk] = Eq[

∑
k log pk

Xk
pk

]

log
∑
k pk

Xk
pk
≥

∑
k pk log Xk

pk

⇒ Eq[log
∑
k pk

Xk
pk

] ≥
∑
k pk Eq[log Xk

pk
]

⇒ Eq[log
∑
kXk] ≥

∑
k pk Eq[logXk]− pk log pk

(13)

The lower bound of Eq. 13 is applied in Eq. 8 and it is a general lower bound
useful for the log–sum terms in the ELBO computation. If we want a tight lower
bound, we should use Lagrange multipliers to choose the set of pk that maximize
the lower-bound given that they sum to 1.

L(p1, . . . , pK) = (
∑
k pk Eq[logXk]− pk log pk) + λ (1−

∑
k pk)

∂L
∂pk

= Eq[logXk]− log pk − 1− λ = 0
∂L
∂λ = 1−

∑
k pk = 0

⇒ Eq[logXk] = log pk + 1 + λ
⇒ exp Eq[logXk] = pk exp(1 + λ)

⇒
∑
k exp Eq[logXk] =

∑
k

pk︸ ︷︷ ︸
=1

exp(1 + λ)

⇒ pk =
exp{Eq [logXk]}∑
k exp{Eq [logXk]}

(14)

The final formula for pk in Eq. 14 is exactly the same that we can find for
the parameters of the Multinomial distribution of the auxiliary variables in the
Poisson model with sum of Gamma distributed latent variables, which demon-
strates that the choice of distribution for the auxiliary variables is optimal for
this lower-bound.


