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Abstract. We present a novel notion of outlier, called Concentration
Free Outlier Factor (CFOF), having the peculiarity to resist concentra-
tion phenomena that affect other scores when the dimensionality of the
feature space increases. Indeed we formally prove that CFOF does not
concentrate in intrinsically high-dimensional spaces. Moreover, CFOF is
adaptive to different local density levels and it does not require the com-
putation of exact neighbors in order to be reliably computed. We present
a very efficient technique, named fast-CFOF, for detecting outliers in
very large high-dimensional datasets. The technique is efficiently paral-
lelizable, and we provide a MIMD-SIMD implementation. Experimental
results witness for scalability and effectiveness of the technique and high-
light that CFOF exhibits state of the art detection performances.
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1 Introduction

Outlier detection is a prominent data mining task, whose goal is to single out
anomalous observations, also called outliers [2]. While the other data mining
approaches consider outliers as noise that must be eliminated, as pointed out in
[11] “one person’s noise could be another person’s signal”, thus outliers them-
selves are of great interest in different settings (e.g. fraud detection, ecosystem
disturbances, intrusion detection, cybersecurity, medical analysis, to cite a few).

Data mining outlier approaches can be supervised, semi-supervised, and un-
supervised [13, 8]. Supervised methods take in input data labeled as normal and
abnormal and build a classifier. The challenge there is posed by the fact that
abnormal data form a rare class. Semi-supervised methods, also called one-class
classifiers or domain description techniques, take in input only normal examples
and use them to identify anomalies. Unsupervised methods detect outliers in an
input dataset by assigning a score or anomaly degree to each object.

Unsupervised outlier detection methods can be categorized in several ap-
proaches, each of which assumes a specific concept of outlier. Among the most
popular families there are distance-based [16, 23, 5, 4], density-based [7, 15, 20],
angle-based [18], isolation-forest [19], subspace methods [1, 14], and others [2, 9,
25].



This work focuses on unsupervised outlier detection problem in the full fea-
ture space. In particular, we introduce a novel notion of outlier, the Concentra-
tion Free Outlier Factor (CFOF), having the peculiarity to resist concentration
phenomena affecting other measures. Informally, the CFOF score measures how
many neighbors have to be taken into account in order for the object to be con-
sidered close by an appreciable fraction of the population. The term distance
concentration refers to the tendency of distances to become almost indiscernible
as dimensionality increases, and is part of the so called curse of dimensionality
problem [6, 10]. And, indeed, the concentration problem also affects outlier scores
of different families due to the specific role played by distances in their formula-
tion [17, 25]. Moreover, a special kind of concentration phenomenon, known as
hubness, concerns scores based on reverse nearest neighbor counts [12, 22], that
is the concentration of the scores towards the values associated with anomalies,
which results in almost all the dataset composed of outliers.

The contributions of the work within this scenario are summarized next:

– As a major peculiarity, we formally show that, differently from the practical
totality of existing outlier scores, the CFOF score distribution is not affected
by concentration phenomena arising when the dimensionality of the space
increases.

– The CFOF score is adaptive to different local density levels. Despite lo-
cal methods usually require to know the exact nearest neighbors in order
to compare the neighborhood of each object with the neighborhood of its
neighbors, this is not the case for CFOF, which can be reliably computed
through sampling. This characteristics is favored by the separation between
inliers and outliers guaranteed by the absence of concentration.

– We describe the fast-CFOF technique, which from the computational point
of view does not suffer of the problems affecting (reverse) nearest neighbor
search techniques. The cost of fast-CFOF is linear both in the dataset size
and dimensionality. Moreover, we provide a multi-core (MIMD) vectorized
(SIMD) implementation.

– The applicability of the technique is not limited to Euclidean or vector
spaces. It can be applied both in metric and non-metric spaces equipped
with a distance function.

– Experimental results highlight that CFOF exhibits state of the art detection
performances.

The rest of the work is organized as follows. Section 2 introduces the CFOF
score and its properties. Section 3 describes the fast-CFOF algorithm. Section
4 presents experiments. Finally, Section draws conclusions.

2 The Concentration Free Outlier Factor

2.1 Definition

We assume that a dataset DS = {x1, x2, . . . , xn} of n objects belonging to an
object space U, on which a distance function dist is defined, is given in input.
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(a) The top 25 outliers according to the
CFOF definition.
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(b) Density estimation performed by
means of the CFOF measure.

Fig. 1: Two normal clusters with different standard deviation.

We assume that U = Dd (where D is usually the set R of real numbers), with
d ∈ N+, but the method can be applied in any object space equipped with a
distance function (not necessarily a metric).

Given an object x and a positive integer k, the k-th nearest neighbor of
x is the object nnk(x) such that there exists exactly k − 1 objects lying at
distance smaller than dist(x,nnk(x)) from x. It always holds that x = nn1(x).
We assume that ties are non-deterministically ordered. The k nearest neighbors
set NNk(x) of x, where k is also called the neighborhood width, consists of the
objects {nni(x) | 1 ≤ i ≤ k}.

By Nk(x) we denote the number of objects having x among their k nearest
neighbors:

Nk(x) = |{y : x ∈ NNk(y)}|,

also referred to as reverse k nearest neighbor count or reverse neighborhood size.
Given a parameter % ∈ (0, 1) (or equivalently a parameter k% ∈ [1, n] such

that k% = n%), the Concentration Free Outlier Score, also referred to as CFOF,
is defined as:

CFOF(x) = min {k/n : Nk(x) ≥ n%} , (1)

that is to say, the score returns the smallest neighborhood width (normalized
with respect to n) for which the object x exhibits a reverse neighborhood of size
at least n% (or k%).

1

Intuitively, the CFOF score measures how many neighbors have to be taken
into account in order for the object to be considered close by an appreciable

1 Notice that k (or k/n), representing a neighborhood width, denotes the output of
CFOF, while the other outlier definitions employ k as an input parameter. We warn
the reader that, in order to make more intelligible the comparison of CFOF with
other outlier techniques, sometimes we will refer to k as an input parameter (the
use will be clear from the context). Moreover, in order to avoid confusion and to
maintain analogy with the input parameter %, we also refer to % as k%.



fraction of the dataset objects. We notice that this kind of notion of perceiving
the abnormality of an observation is completely different from any other notion
so far introduced in the literature.

The CFOF score is adaptive to different density levels. This characteristics
is also influenced by the fact that actual distance values are not employed in its
computation. Thus, CFOF is invariant to all of the transformations the leave
unchanged the nearest neighbor ranking, such as translation or scaling. Also,
duplicating the data in a way that avoids to affect the original neighborhood
order (e.g. by creating a separate, possibly scaled, cluster from each copy of the
original data) will preserve original scores.

Consider Figure 1 showing a dataset consisting of two normally distributed
clusters, each consisting of 250 points. The cluster centered in (4, 4) is obtained
by translating and scaling (by a factor 0.5) the cluster centered in the origin. The
top 25 CFOF outliers for k% = 20 are highlighted (objects within small circles).
It can be seen that the outliers are the “same” objects of the two clusters.

2.2 Relationship with the distance concentration phenomenon

The term distance concentration, which is part of the so called curse of dimen-
sionality problem [6], refers to the tendency of distances to become almost indis-
cernible as dimensionality increases. In a more quantitative way this phenomenon
is measured through the ratio between a quantity related to the mean µ and a
quantity related to the standard deviation σ of the distance distribution of in-
terest. E.g., in [10] the intrinsic dimensionality ρ of a metric space is defined
as ρ = µ2

d/(2σ
2
d), where µd is the mean of the pairwise distance distribution

and σd the associated standard deviation. The intrinsic dimensionality intends
to quantify the expected difficulty of performing a nearest neighbor search: the
smaller the ratio the larger the difficulty to search on an arbitrary metric space.

In general, it is said that we have concentration when this kind of ratio tends
to zero as dimensionality goes to infinity, as it is the case for objects with i.i.d.
attributes.

The concentration problem also affects different families of outlier scores, due
to the specific role played by distances in their formulation.

Figure 2 reports the sorted scores of different outlier detection techniques,
that are aKNN [5], LOF [7], ABOF [18], and CFOF (the parameters k of aKNN,
LOF, and ABOF, and k% of CFOF, are held fixed to 50 for all the scores),
associated with a family of uniformly distributed datasets having fixed size (n =
1000) and increasing dimensionality d ∈ [100, 104]. The figure highlights that,
except for CFOF, the other scores exhibit a concentration effect. For aKNN
(Figure 2a) the mean score value raises while the spread stay limited. For LOF
(Figure 2b) all the values tend to 1 as the dimensionality increases. For ABOF
(Figure 2c) both the mean and the standard deviation decrease of various orders
of magnitude with the latter term varying at a faster rate than the former one.
As for CFOF the score distributions for d > 100 are very close and exhibit only
slight changes. Notably, the separation between scores associated with outliers
and inliers is always ample.
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Fig. 2: Sorted outlier scores.

2.3 Relationship with the hubness phenomenon

CFOF has connections with the reverse neighborhood size, a tool which has been
also used for characterizing outliers. In [12], the authors proposed the use of the
reverse neighborhood size Nk(·) as an outlier score, which we refer to as RNN
count (RNNc for short). Outliers are those objects associated with the lowest
RNN counts. However, RNNc suffers of a peculiar problem known as hubness
[21]. As the dimensionality of the space increases, the number of antihubs, that
are objects appearing in a much lower number of k nearest neighbors sets (possi-
bly they are neighbors only of themselves), overcomes the number of hubs, that
are objects that appear in many more k nearest neighbor sets than other points,
and, according to the RNNc score, the vast majority of the dataset objects be-
come outliers with identical scores.

We provide evidence that CFOF does not present the hubness problem. Fig-
ure 3 reports the distribution of the Nk(·) value and of the CFOF absolute score
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Fig. 3: Distribution of CFOF and RNN counts.

for a ten thousand dimensional normal dataset (a very similar behavior has been
observed also for uniform data). Notice that CFOF outliers are associated with
the largest score values, hence to the tails of the corresponding distribution,
while RNNc outliers are associated with the smallest score values, hence with
the largely populated region of the associated score distribution, a completely
opposite behavior. To illustrate the impact of the hubness problem with the
dimensionality, Figure 4 shows the cumulative frequency associated with the
normalized, between 0 and 1, increasing score. This transformation has been
implemented here in order to make the comparison much more interpretable.
Original scores have been mapped to [0, 1]. CFOF scores have been divided by

their maximum value. The mapping for Nk(·) has been obtained as 1− Nk(x)
maxy Nk(y)

,

since outliers are those objects associated with the lowest counts. The plots make
evident the deep difference between the two approaches. Here both n and k for
RNNc (k% for CFOF, resp.) are held fixed, while d is increased. As for RNNc, the
hubness problem is already evident for d = 10 (where objects with a normalized
score ≥ 0.8 corresponds to about the 40% of the dataset), while the curve for
d = 102 closely resembles that for d = 104 (where almost all the dataset objects
have a normalized score ≥ 0.8). As far as CFOF is concerned, the two curves
for d = 104 closely resemble each other and the number of objects associated
with a large score value always correspond to a very small fraction of the dataset
population.

2.4 Concentration free property of CFOF

In this section we formally prove that the CFOF score is concentration-free.
Specifically, the following theorem shows that the separation between the scores
associated with outliers and the rest of the scores is guaranteed in any arbitrary
large dimensionality.
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Fig. 4: Comparison between CFOF and RNN counts.

Before going into the details, we recall that the concept of intrinsic dimen-
sionality of a space is identified as the minimum number of variables needed to
represent the data, which corresponds in a linear space to the number of linearly
independent vectors needed to describe each point.

Theorem 1. Let DS(d) be a d-dimensional dataset consisting of realizations of a
d-dimensional independent and (non-necessarily) identically distributed random
vector X having distribution function f . Then, as d → ∞, the CFOF scores of
the points of DS(d) do not concentrate.

Proof. Consider the squared norm ‖X‖2 =
∑d
i=1X

2
i of the random vector X.

As d → ∞, by the Central Limit Theorem, the standard score of
∑d
i=1X

2
i

tends to a standard normal distribution. This implies that ‖X‖2 approaches a
normal distribution with mean µ‖X‖2 = E[X2

i ] = dµ2 and variance σ2
‖X‖2 =

d(E[(X2
i )2])−E[X2

i ]) = d(µ4−µ2
2), where µ2 and µ4 are the 2nd- and 4th-order

central moments of the univariate probability distribution f .
In the case that the components Xi of X are non-identically distributed

according to the distributions fi (1 ≤ i ≤ d), the result still holds by considering
the average of the central moments of the fi functions.

Let x be an element of DS(d) and define the zeta score zx of the squared
norm of x as

zx =
‖x‖2 − µ‖X‖2

σ‖X‖2
.

It can be shown [3] that, for large values of d, the number of k-occurrences
of x is given by

Nk(x) = n · Pr[x ∈ NNk(X)] ≈ nΦ

(
Φ−1( kn )

√
µ4 + 3µ2

2 − zx
√
µ4 − µ2

2

2µ2

)
.



Let t(zx) denote the smallest integer k such that Nk(x) ≥ n%. By exploiting the
equation above it can be concluded that

t(zx) ≈ nΦ

(
zx
√
µ4 − µ2

2 + 2µ2Φ
−1(%)√

µ4 + 3µ2
2

)
.

Since CFOF(x) = k/n implies that k is the smallest integer such that Nk(x) ≥
n%, it also follows that CFOF(x) ≈ t(zx)/n = t̂(zx).

Moreover, since as stated above the ‖X‖2 random variable is normally dis-
tributed, it also holds that for each z ≥ 0

Pr

[‖X‖2 − µ‖X‖2
σ‖X‖2

≤ z
]

= Φ(z),

where Φ(·) denotes the cdf of the normal distribution.

Thus, for arbitrarily large values of d and for any standard score value z ≥ 0

Pr
[
CFOF (X) ≥ t̂(z)

]
= 1− Φ(z),

irrespective of the actual data dimensionality value d.

3 Score computation

CFOF scores can be determined in time O(n2d), where d denotes the dimen-
sionality of the feature space (or the cost of computing a distance), after com-
puting all pairwise dataset distances.2 Next we introduce a technique, named
fast-CFOF which does not require the computation of the exact nearest neigh-
bor sets and, from the computational point of view, does not suffer of the curse
of dimensionality affecting nearest neighbor search techniques.

The technique builds on the following probabilistic formulation of the CFOF
score. Assume that the dataset consists of n i.i.d. samples drawn according to an
unknown probability law p(·). Given a parameter % ∈ (0, 1), the (Probabilistic)
Concentration Free Outlier Factor CFOF is defined as follows:

CFOF(x) = min
{
k/n : E

[
Pr[x ∈ NNk(y)]

]
≥ %

}
. (2)

To differentiate the two definitions reported in Eqs. (1) and (2), we also refer
to the former as hard -CFOF and to the latter as soft-CFOF. Intuitively, the
soft-CFOF score measures how many neighbors have to be taken into account in
order for the expected number of dataset objects having it among their neighbors
correspond to the fraction % of the overall population.

2 It is generally recognized that this cost can be reduced to O(dn logn) in low dimen-
sional spaces.



3.1 The fast-CFOF technique

Given a dataset DS and two objects x and y from DS, the building block of the
algorithm is the computation of Pr[x ∈ NNk(y)]. Consider the boolean function
Bx,y(z) defined on instances z of DS such that Bx,y(z) = 1 if z lies within the
region Idist(x,y)(y), and 0 otherwise. We want to estimate the average value Bx,y
of Bx,y in DS, which corresponds to the probability p(x, y) that a randomly
picked dataset object z is at distance not grater than dist(x, y) from y.

It is enough to compute Bx,y within a certain error bound. Thus, we resort
to batch sampling, consisting in picking up s elements of DS randomly and
estimating p(x, y) = Bx,y as the fraction p̂(x, y) of the elements of the sample
satisfying Bx,y [24]. Given δ > 0 (an error probability) and ε, 0 < ε < 1 (an
absolute error), if the sample size s satisfies certain conditions [24] then

Pr[|p̂(x, y)− p(x, y)| ≤ ε] > 1− δ. (3)

For large values of n, since the variance of the Binomial distribution becomes
negligible with respect to the mean, the cdf binocdf(k; p, n) tends to the step
function H

(
k − np

)
, where H

(
k
)

= 0 for k < 0 and H
(
k
)

= 1 for k > 0. Thus,
we can approximate the value Pr[x ∈ NNk(y)] = binocdf(k; p(x, y), n) with the
boolean function H

(
k − kup(x, y)

)
, with kup(x, y) = np̂(x, y).3 It then follows

that we can obtain E
[
Pr[x ∈ NNk(y)]

]
as the average value of the boolean

function H
(
k − np̂(x, y)

)
, whose estimate can be again obtained by exploiting

batch sampling. Specifically, fast-CFOF exploits the one single sample in order
to perform the two estimates above described.

The algorithm fast-CFOF receives in input a list % = %1, . . . , %` of values for
the parameter %, since it is able to perform a multi-resolution analysis, that is
to compute scores associated with different values of the parameter % with no
additional cost. Both % and parameters ε, δ can be conveniently left at the default
value (% = 0.001, 0.005, 0.01, 0.05, 0.1 and ε, δ = 0.01; see later for details).

First, the algorithm determines the size s =
⌈

1
2ε2 log

(
1
δ

)⌉
of the sample (or

partition) of the dataset needed in order to guarantee the bound reported in Eq.
(3). We notice that the algorithm does not require the dataset to be entirely
loaded in main memory, since only a partition at a time is needed to carry out
the computation. Thus, the technique is suitable also for disk resident datasets.
We assume that dataset objects are randomly ordered and, hence, partitions
can be contiguous. Otherwise, randomization can be done in linear time and
constant space by disk-based shuffling. Each partition, consisting of a group
of s consecutive objects, is processed by the subroutine fast-CFOF part (see
Algorithm 1), which estimates CFOF scores of the objects within the partition
through batch sampling.

The matrix hst, consisting of s×B counters, is employed by fast-CFOF part.
The entry hst(i, k) of hst is used to estimate how many times the sample object

3 Alternatively, by exploiting the Normal approximation of the Binomial distribution,
a suitable value for kup(x, y) is given by kup(x, y) = np̂(x, y)+c

√
np̂(x, y)(1− p̂(x, y))

with c ∈ [0, 3].



Algorithm 1: fast-CFOF part

Input: Dataset sample 〈x′1, . . . , x′s〉 of size s, parameters %1, . . . , %` ∈ (0, 1),
dataset size n

Output: CFOF scores 〈sc′1,%, . . . , sc′s,%〉
1 initialize matrix hst of s×B elements to 0;

// Nearest neighbor count estimation

2 foreach i = 1 to s do
// Distances computation

3 foreach j = 1 to s do
4 dst(j) = dist(x′i, x

′
j);

// Count update

5 ord = sort(dst);
6 foreach j = 1 to s do
7 p = j/s;

8 kup = bnp + c
√

np(1− p) + 0.5c;
9 kpos = k bin(kup);

10 hst(ord(j), kpos) = hst(ord(j), kpos) + 1;

// Scores computation

11 foreach i = 1 to s do
12 count = 0;
13 kpos = 0;
14 l = 1;
15 while l ≤ ` do
16 while count < s%l do
17 kpos = kpos + 1;
18 count = count + hst(i, kpos);

19 sc′i,%l = k bin−1(kpos)/n;
20 l = l + 1;

x′i is the kth nearest neighbor of a generic object dataset. Values of k, ranging
from 1 to n, are partitioned into B log-spaced bins. The function k bin maps
original k values to the corresponding bin, while k bin−1 implements the reverse
mapping (by returning a certain value within the corresponding bin).

For each sample object x′i, the distance dst(j) from any other sample object
x′j is computed (lines 3-4) and, then, distances are ordered (line 5) obtaining
the list ord of sample identifiers such that dst(ord(1)) ≤ dst(ord(2)) ≤ . . . ≤
dst(ord(s)).

Moreover, for each element ord(j) of ord, the variable p is set to j/s (line
7), representing the probability p(x′ord(j), x

′
i), estimated through the sample,

that a randomly picked dataset object is located within the region of radius
dst(ord(j)) = dist(x′i, x

′
ord(j)) centered in x′i. The value kup (line 8) represents

the point of transition from 0 to 1 of the step function H
(
k − kup

)
employed

to approximate the probability Pr[x′ord(j) ∈ NNk(y)] when y = x′i. Thus, before



concluding each cycle of the inner loop (lines 6-10), the k bin(kup)-th entry of
hst associated with the sample x′ord(j) is incremented.

The last step consists in the computation of the scores. For each sample x′i
the associated counts are accumulated till their sum goes over the value %s and
the associated value of k is employed to obtain the score.

The temporal cost of the technique is O (s · n · d), where s is independent of
the number n of dataset objects and can be considered a constant, and n · d is
the size of the input, hence the temporal cost is linear in the size of the input.
As for the spatial cost, O(Bs) space is needed for storing counters hst, O(2s)
for distances dst and the ordering ord, O(`s) for storing scores, and O(sd) for
the buffer maintaining the sample, hence the spatial cost is linear in the sample
size.

Before concluding, we notice that fast-CFOF is an embarrassingly parallel
algorithm, since partition computations do not need to communicate interme-
diate results. Thus, it is readily suitable for multi-processor/computer system.
We implemented a version for multi-core processors (using gcc, OpenMP, and
the AVX x86-64 instruction set extensions) that elaborates partitions sequen-
tially, but employs both MIMD (cores) and SIMD (vector registers) parallelism
to elaborate each single partition.

4 Experimental results

Experiments are performed on a Intel Core i7 2.40GHz CPU (having 4 cores
with 8 hardware threads, and SIMD registers accommodating 8 single-precision
floating-point numbers) based PC with 8GB of main memory, under the Linux
operating system. As for the implementation parameters, the number B of hst
bins is set to 100 and the constant c used to compute kup is set to 2. We assume
0.01 as the default value for the parameters %, ε, and δ.

Some of the dataset employed are described next. Clust2 is a dataset family
(with n ∈ [104, 106] and d ∈ [2, 103]) consisting of two normally distributed
clusters centered in the origin and in (4, . . . , 4), with standard deviation 1.0
and 0.5 along each dimension, respectively. MNIST is a dataset consisting of
handwritten digits4 composed of n = 60000 vectors and d = 784 dimensions.

4.1 Accuracy

The goal of this experiment is to assess the quality of the result of fast-CFOF
for different sample sizes, that is different combinations of the parameters ε and
δ. We notice that the default sample size is s = 26624. With this aim we first
computed the exact dataset scores by setting the sample size s to n.

Figure 5 compares the exact scores with those obtained for the standard
sample size on the Clust2 (for n = 105 and d = 100) and MNIST datsets. The
blue curve is associated with the exact scores sorted in descending order and the

4 http://yann.lecun.com/exdb/mnist/



10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

Rank position

C
F

O
F

 s
c
o
re

Dataset Clust2

 

 

Exact

ε,δ=0.1

(a)

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank position

C
F

O
F

 s
c
o
re

Dataset MNIST

 

 

Exact

ε,δ=0.1

(b)

Fig. 5: Accuracy analysis of fast-CFOF.

x-axis represents the outlier rank position of the dataset objects. As for the red
curve, it shows the approximate scores associated with the objects at each rank
position. The curves highlight that the ranking position tends to be preserved
and that in both cases top outliers are associated with the largest scores.

We can justify the accuracy of the method by noticing that the larger the
CFOF score of x and, for any y, the larger the probability p(x, y) that a dataset
object will lie in between x and y and, moreover, the smaller the impact of the
error ε on the estimated value p̂(x, y). Intuitively, the objects we are interested
in, that are the outliers, are precisely the one least prone to bad estimations.

We employ the Spearman’s rank correlation coefficient to assesses relation-
ship between the two rankings. This coefficient is high (close to 1) when obser-
vations have a similar rank. Table 1 reports Spearman’s coefficients for different
combinations of ε, δ, and %. The coefficient ameliorates for increasing samples
(very high values are reached for the default sample) and larger % values (that
exhibit high coefficient values also for small samples).

4.2 Scalability

Figure 6 shows the execution time on the Clust2 and MNIST datasets.
Figure 6a shows the execution time on Clust2 for the default sample size,

n ∈ [104, 106] and d ∈ [2, 103]. The largest dataset considered (n = 106 and
d = 103, occupying 4GB of disk space) required about 44 minutes. fast-CFOF
exhibits a sub-linear dependence from the dimensionality, due to the exploitation
of the SIMD parallelism. As for the dashed curves, they are obtained by disabling
MIMD parallelism. The performance ratio between the two versions is about 7.6,
thus confirming the effectiveness of the parallelization schema.

Figure 6b shows the execution time on Clust2 (n = 106, d = 103) and MNIST
(180MB of disk space) for different sample sizes. As for Clust2, the execution
time drops from 44 minutes, for the default sample, to about 24 minutes, for



Clust2 (n = 100000, d = 100)
ε δ s %1 %2 %3 %4 %5

0.001 0.005 0.01 0.05 0.1

0.1 0.1 512 — 0.874 0.943 0.981 0.986
0.025 0.025 3584 0.933 0.985 0.991 0.996 0.996
0.01 0.1 15360 0.988 0.996 0.997 0.998 0.997
0.01 0.01 26624 0.994 0.998 0.998 0.998 0.997

MNIST (n = 60000, d = 784)
ε δ s %1 %2 %3 %4 %5

0.001 0.005 0.01 0.05 0.1

0.1 0.1 512 — 0.526 0.679 0.886 0.939
0.025 0.025 3584 0.683 0.899 0.938 0.979 0.988
0.01 0.1 15360 0.929 0.978 0.985 0.993 0.995
0.01 0.01 26624 0.965 0.989 0.992 0.996 0.997

Table 1: Spearman correlation between the exact and approximate outlier rank-
ings computed by fast-CFOF.
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Fig. 6: Scalability analysis of fast-CFOF.

s = 15360 (ε = 0.01, δ = 0.1). Finally, as for MNIST, the whole dataset (s = n)
required less than 6 minutes, while about 3 minutes are required with the default
sample.

4.3 Effectiveness

On Clust2, we used the distance to cluster centers as the ground truth. Specif-
ically, for each dataset object, the distance R from the closest cluster center
has been determined and distances associated with the same cluster have been
normalized as R′ = R−µR

σR
. Table 2 reports the Spearman’s correlation between

normalized distances R′ and CFOF scores. The high correlation values witness
for both the meaningfulness of the definition and its behavior as a local outlier
measure even in high dimensions.



Clust2 (n = 100000, d = 100)
ε δ s %1 %2 %3 %4 %5

0.001 0.005 0.01 0.05 0.1

0.1 0.1 512 — 0.874 0.943 0.981 0.987
0.025 0.025 3584 0.932 0.985 0.992 0.997 0.998
0.01 0.1 15360 0.987 0.997 0.998 0.999 0.999
0.01 0.01 26624 0.993 0.998 0.999 0.999 0.999

Table 2: Spearman correlation between the normalized distance to the object’s
cluster center and the score computed by fast-CFOF.

Fig. 7: Top CFOF outliers of MNIST.

Figure 7 shows the height top outliers of MNIST. It appears that these digits
are deformed, quite difficult to recognize, and possibly misaligned within the
28× 28 cell grid.

4.4 Comparison with other approaches

We compared CFOF with aKNN, LOF, and ABOD, by using some labelled
datasets as ground truth. The datasets, randomly selected at the UCI ML Repos-
itory5, are: Breast Cancer Wisconsin Diagnostic (n = 569, d = 32), Image seg-
mentation (n = 2310, d = 19), Ozone Level Detection (n = 2536, d = 73), Pima
indians diabetes (n = 768, d = 8), QSAR biodegradation (n = 1055, d = 41),
Yeast (n = 1484, d = 8). Each class in turn is marked as abnormal, and a dataset
composed of all the objects of the other classes plus 10 randomly selected objects
of the abnormal class is considered. Table 3 reports the Area Under the ROC
Curve (AUC) obtained by CFOF (hard -CFOF has been used), aKNN, LOF, and
ABOD. As for the parameters k% and k, for all the methods the corresponding
parameter has been varied between 2 and 100, and the best result has been re-
ported in the table. Notice that the wins are 16 for CFOF, 4 for aKNN, 2 for
LOF, and 4 for ABOD. The comparison points out that CFOF represents an
outlier detection definition with its own peculiarities, since the other methods
behaved differently, and state of the art detection performances.

5 https://archive.ics.uci.edu/ml/index.html



Dataset Class CFOF aKNN LOF ABOD

Breast
0 0.929 0 .936 0.952 0.914
1 0.805 0.685 0 .780 0.404

Image

1 0.942 0.812 0 .846 0.649
2 0.990 0.988 0.987 0 .989
3 0.956 0.817 0 .919 0.713
4 0.936 0.971 0 .949 0.941
5 0.933 0.688 0 .884 0.688
6 0.979 0 .979 0.968 0.982
7 0.993 0.973 0 .982 0.976

Ozone
0 0.728 0.677 0.662 0 .680
1 0.656 0.429 0 .591 0.426

Pima
0 0.736 0.509 0 .626 0.454
1 0 .677 0.700 0.670 0.626

QSAR
0 0.692 0.503 0.444 0 .545
1 0.818 0.706 0.706 0 .757

Yeast

0 0.769 0.526 0 .568 0.487
1 0.743 0.678 0 .729 0.629
2 0.788 0.327 0 .437 0.313
3 0.772 0.832 0.700 0 .820
4 0.721 0.808 0.695 0 .803
5 0.735 0 .728 0 .728 0.735
6 0 .766 0.613 0.783 0.636
7 0.794 0.550 0 .587 0.543
8 0.814 0 .881 0.850 0.892
9 0.980 0.993 0 .981 1.000

Table 3: AUCs for the labelled datasets.

5 Conclusions

We presented the Concentration Free Outlier Factor, a novel density estimation
measure whose main characteristic is to resist to concentration phenomena usu-
ally arising in high dimensional spaces and to allow very efficient and reliable
outlier detection through the use of sampling. We are extending the study of the
theoretical properties of the definition, assessing guarantees of the fast-CFOF
algorithm, and extending the experimental activity. We believe that the CFOF
score can offer insights also in the context of other data mining tasks. We are
currently investigating its application in other classification scenarios.
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