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Abstract. Learning interactions between dynamical processes is a widespread
but difficult problem in ecological or human sciences. Unlike in other domains
(bioinformatics, for example), data is often scarce, but expert knowledge is avail-
able. We consider the case where knowledge is about a limited number of in-
teractions that drive the processes dynamics, and on a community structure in
the interaction network. We propose an original framework, based on Dynamic
Bayesian Networks with labeled-edge structure and parsimonious parameteriza-
tion, and a Stochastic Block Model prior, to integrate this knowledge. Then we
propose a restoration-estimation algorithm, based on 0-1 Linear Programing, that
improves network learning when these two types of expert knowledge are avail-
able. The approach is illustrated on a problem of ecological interaction network
learning.

Keywords: Labeled edge network learning, Dynamic Bayesian Network, Stochastic
block model, 0-1 linear programing, Trophic network.

1 Introduction

Learning an interaction network between entities is a widespread problem in bioinfor-
matics [29], ecology [19] or social sciences [17]. This problem is often formulated in
the framework of Bayesian Networks (BN) [13]. When the state of variables changes
through time, learning approaches based on Dynamic Bayesian Networks (DBN) have
also been proposed [10]. Learning a DBN amounts to learning both its structure (i.e.
the conditional independences between the variables) and its Transition Probability Ta-
bles (TPT). Several solution approaches to DBN learning exist. They generally extend
the methods used for learning static BN (see [20] for a review). They often consist in
defining a global score function on networks measuring their “goodness of fit” and in
using search methods to find the DBN structure and TPT that jointly optimize the score
function. While finding an optimal BN is NP-hard in general [4], it is not the case for
DBN without synchronous edges where the global score function is decomposable into
independent local scores (one per variable). This is because, without synchronous arcs,
a DBN structure is acyclic, so there is no need to check a global acyclicity constraint
on the learned network, as opposed to the BN case. Under this assumption, [6] has pro-
vided polynomial time algorithms for learning DBN structure in the case of minimum
description length (MDL) and Bayesian Dirichlet equivalence (BDe) scores. [27] have
extended these results to the Mutual Information Tests (MIT) score.
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Even with the hypothesis of no synchronous edges, learning DBN structure remains
difficult since in many problems where interactions are to be learned, observed data
are scarce. On the other hand, expert knowledge is often available for such problems,
that could be taken into account in the learning process. In this paper, we consider two
different types of expert knowledge and show how to use this knowledge to improve
DBN structure learning.

First, we consider information about the mechanisms driving the process dynamics
(e.g. facilitation, competition, cooperation...). This may be useful in order to constrain
some elements of the TPT. For instance, equality constraints between some elements of
distinct TPTs have been studied by [22]. Here, we derive such equalities in the case of
generalized ’per contact’ processes where the dynamics of a variable is the result of a
limited number of interaction types. This enables us to define a parsimonious parame-
terization of the TPT from a labeled-edge structure of the DBN, using one label and one
parameter per interaction type.Then, variables submitted to the same influences share
the same TPT. This defines the general framework of DBN with labeled-edge structure
and parsimonious parameterization of the TPT (section 2.1). We will refer to them as
Labeled DBN (L-DBN). We consider in particular the case of only two types of inter-
actions: impulsion and inhibition.

The idea of labeling the edges of a BN to model the positive or negative influence of
a variable on another has already been considered in the framework of qualitative BN
[28]. However, such a labeled network is usually given as an input of a BN parameter
learning problem, in order to constrain the learned CPT [8]. In this article we tackle the
question of learning the labels together with the structure and the parameters.

The second type of information we consider is knowledge about the structure of the
interaction network. Structural constraints can be imposed on the network to simplify
the learning task by reducing the search space, independently of the physical meaning
of the network. They can be local constraints on node degree or forbidden edges [3].
Global features have also been considered. For instance, in [24] an upper bound of the
treewidth of the BN graph is introduced in the learning procedure. In [23], the authors
introduce a prior on the partial ordering of the nodes and show how to learn a BN in
a Bayesian framework. As opposed to these kind of constraints, we consider structural
constraints linked to expert knowledge, and we formalize the introduction of knowl-
edge about a community structure of the network, during L-DBN learning. Namely we
assume that the nodes of the interaction network are grouped into communities. Social
networks, as well as food webs, are naturally structured in communities of individuals
defined by jobs, schools, etc, or by trophic levels... Knowing them provides some prior
knowledge about the within and between communities interactions that can help the
learning. We model this a priori as a Stochastic Block Model (SBM, [15]), in the spirit
of [1] for static continuous data for learning Gaussian graphical models. In this paper,
we extend SBM to multiple interaction types, in order to deal with the labeled edges of
a L-DBN (Section 2.2).

In Section 3, we propose an iterative Restoration-Estimation (RE) algorithm for
learning both the structure (edges and labels) and the parameters of a L-DBN model
with SBM prior. In Sections 4 and 5, we model and solve a problem of ecological inter-
actions network learning by combining a L-DBN model related to causal independence
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BN models [14], the SBM prior and the RE algorithm. In Section 6, we evaluate, on
synthetic ecological networks and on a real one, how the successive introductions of
knowledge on interaction types and on network structure improve the quality of the re-
stored network, compared to a learning approach based on a non-parameterized DBN.

2 Integrating Labeled Edges and Community Structure
Knowledge in DBN

2.1 Labeled Dynamic Bayesian Networks

Let us consider a set {(Xt
1)t=1,...T , . . . , (X

t
n)t=1,...T } of n coupled random processes

over horizon T . Then, denoting Xt = {Xt
1, . . . , X

t
n}, a DBN allows to concisely

represent the joint probability distribution P (X1, . . . , XT ) under Markovian and sta-
tionarity assumptions, by exploiting conditional independence between the variables.
These independences can be represented by a bipartite graph G→ = (V,E) between
two sets of vertices, both indexed by {1, . . . , n} and respectively representing the vari-
ables {Xt

1, . . . , X
t
n} and {Xt+1

1 , . . . , Xt+1
n }. In G→, edges are directed from vertices at

time t, to vertices at time t+1. The joint probability distribution writes P (Xt+1|Xt) =∏n
i=1 P (X

t+1
i |Xt

Par(i,G→)), where Par(i,G→) = {j, (j, i) ∈ E}.
The DBN framework enables a huge gain in space by representing individual ta-

bles Pi(Xt+1
i |Xt

Par(i,G→)) rather than directly the joint transition probability. However,
when some domain-specific knowledge impose that some individual transition proba-
bilities are identical, it is possible to save even more space. This will be the case, for
instance, when a limited number L of interaction types between variables exists, and
all interactions of same type have the same effect on a variable, regardless which par-
ent variables are concerned. We can use these interaction types to define the TPT by
a small number of parameters. This is the case for epidemic contact processes models
[9], where there is only one interaction type (contamination) and the state of a variable
Xt
i only depends on the number of infected parents (and not on the precise knowledge

of which parents are infected). We generalize this idea with the L-DBN framework. To
do so, we consider a labeled version of graph G→, namely graph LG→ = (V,E,L, λ),
where E is a set of edges, L = {1, . . . , L} a set of edge labels (interaction types) and
λ : E → L a labeling function.

Definition 1 A Labeled DBN is a DBN such that:

– In the graphical representation of the conditional independences of the global tran-
sition probability, each edge is labeled by a label l ∈ L (except edges from Xt

i to
Xt+1
i if present). The set of parents of a vertex i connected through an edge with

label l is denoted Parl(i,LG→).
– Two parents in Parl(i,LG→) are assumed indistinguishable in their influence on
i, and each labeled influence applies independently. This means that the transition
probability distribution of Xt+1

i only depends on the number of parents in each
possible state for each label (and the state of Xt

i if the edge exists).
– Two individuals i and j, such that card(Parl(i,LG→)) = card(Parl(j,LG→))

for all l ∈ L, have the same TPT.
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– This transition probability distribution is defined as a function of a vector of pa-
rameters θ, of low dimension (one per label and, possibly, a further one to model
transitions independent of the {Parl(i,LG→)}l).

Once the form of the parameterized transition function is given, the TPTs of a L-
DBN can be modeled in a very concise way, by specifying only the labeled graph (sets
Parl(i,LG→)) and the parameters vector θ. One advantage of using a parameterized
representation of a L-DBN is that it can be learnt more efficiently from small data sets
than a non-parameterized representation.

The L-DBN framework is very general. A family of L-BDN of interest is that of
binary per contact propagation processes. In this case, Xt

i is a binary random variable:
Xt
i = 1 is for presence and Xt

i = 0 represents absence. Two types of interactions are
possible (L = {+,−}): an impulsion interaction (+) from a variable Xt

j to a variable
Xt+1
i , increases the probability of presence of the process i at t+1 ; an inhibition inter-

action (-) from a variable Xt
j to a variable Xt+1

i decreases the probability of presence
of the process i at t + 1 (as in qualitative BN, [28]). All edges of identical label have
the same impact on the transition probabilities of the affected variables. We associate
a parameter to each label: ρ+ is the probability of success of an impulsion ; ρ− is the
probability of success of an inhibition. We also assume that the success or failure of
the influence of all parents are independent (as in a causal independence BN model,
[14]). The L-DBN model when the parents only have an impact on the survival (e.g.
for species in interactions) is as follows. First the probability of apparition at vertex i
is independent from the state of the other variables. We model this by a parameter ε,
interpretable as the probability of spontaneous apparition. Then, the probability of sur-
vival of a process i is the probability of success of at least one impulsion interaction
and of failure of all inhibition interactions. Therefore, the survival of i is the result of
independent coin flips. Let N t

i,l = |{j ∈ Parl(i,LG→), Xt
j = 1}|, for l ∈ {+,−},

then,

P (Xt+1
i = 1|Xt

i = 0) = ε

P (Xt+1
i = 1|Xt

i = 1, N t
i,+, N

t
i,−) =

(
1− (1− ρ+)N

t
i,+

)
· (1− ρ−)N

t
i,− .

Similarly, the L-DBN model when interactions have only an impact on apparition
(e.g. for disease spread) is defined by

P (Xt+1
i = 1|Xt

i = 1) = ε

P (Xt+1
i = 1|Xt

i = 0, N t
i,+, N

t
i,−) =

(
1− (1− ρ+)N

t
i,+

)
· (1− ρ−)N

t
i,− .

The family of per contact propagation processes also includes processes where sur-
vival (or apparition) requires the success of all impulsion interactions and the failure of
one inhibition interaction, and processes defined by any other AND/OR combination of
independent events of impulsion and inhibition successes. In this family, the TPT are
defined by three parameters only: θ = {ρ+, ρ−, ε}.

Figure 1 (left) shows the graphical representation of an example L-DBN structure
LG→ with n = 4. In this example, Par+(1,LG→) = ∅ and Par−(1,LG→) = {2, 4}.
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Because the state of Xt
i determines whether the transition is a survival or an apparition,

we also add an edge from Xt
i to Xt+1

i (without label) not associated to any parameter.
This edge is known, it does not have to be learnt. Figure 1 (right) shows an equivalent
static representation of LG→, where nodes corresponding to variables Xt

i and Xt+1
i

have been collapsed. This representation may have a natural meaning with respect to
the represented process, as will be the case with the ecological network case study we
will describe in Section 4. The meaning of the dashed boxes is related to this example
(see Section 4.2).
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Fig. 1. The two graphical representations of the structure of a L-DBN with 4 variables and 2
labels. Green and red edges represent respectively label ’+’ and ’−’ in the case of ecological net-
work. Black edges represent the unlabeled edges accounting for the dependence of Xt+1

i on Xt
i .

Left: LG→, dynamics representation. Right: equivalent static representation (dashed rectangles
represent the blocks of the SBM).

2.2 Stochastic Bloc Models for L-DBN

In the above section, the labels and the parameterized TPT enable to encode knowledge
about the mechanisms underlying the dynamics of Xt, for a given DBN structure. Now
we present how to embed knowledge about the properties of the structure LG→ itself in
the L-DBN model.

Let
{
Glij
}
1≤i,j≤n,1≤l≤L be a random binary vector representing the presence or

absence of each type of edge from i to j: Glij = 1 if i ∈ Parl(j,LG→) and 0
otherwise. A realization of {Glij}1≤i,j≤n,1≤l≤L defines the labeled graph LG→ of a
L-DBN. Without prior information, the variables Glij could be modeled as indepen-
dent variables with uniform distribution. Instead, we assume that the vertices of the
static representation of LG→ are organized into B disjoints blocks, or communities,
and block membership is indicated by a function f : {1, . . . , n} → {1, . . . , B}. In
the example of Figure 1, there are three such blocks: {1}, {2}, {3, 4}. Then, we model
the distribution of the

{
Glij
}

s in the Stochastic Block Model (SBM) framework [15].
The SBM model makes only two assumptions: (1) the presence of an edge with label
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l from vertex i towards j (variable {Glij}) is independent of the presence of an edge
of the same label from vertex u towards v (variable {Gluv}),∀(i, j, u, v) and (2), the
probability distribution of Glij only depends on l, f(i) and f(j) (and not on the spe-
cific vertices i and j directly). Therefore, in the case of two labels (L = 2) the joint
distribution of the

{
Glij
}
1≤i,j≤n,1≤l≤L is fully determined by the two probabilities

P (G1
ij = 1 | f(i), f(j)) and P (G2

ij = 1 | f(i), f(j), G1
ij). We will assume that these

probabilities are parameterized by parameter ψ. Note that, unlike in most applications
of SBM, we assume here that the block memberships are known while the edges are
unknown and modeled by random variables Glij . This is because our objective is to
learn the network from the blocks and observations Xt

i , instead of learning the blocks
from the network, as usual.

3 A Restoration-Estimation Procedure for L-DBN Structure
Learning

L-DBN parameters and structure learning poses several difficulties. In the non-parame-
terized DBN learning case, when the structure of the DBN is known, analytic expres-
sions for the estimators of the transition probabilities from counts on data are available
[20]. An analytic expression of the solution for likelihood maximization is not avail-
able anymore in L-DBN since the tables are no longer independent. So we will have to
rely on numerical solvers. Structure learning steps (for given model parameters) must
also be handled differently: First, not only edges presence but also their labels must
be learned. Then, usual score functions combine a term measuring how a network fits
a dataset and a penalty term on the model complexity [26], to avoid over-fitting that
occurs when increasing the number of edges in the learnt network. Such penalties are
no longer relevant for a L-DBN, where the number of parameters is fixed and does not
vary with LG→: the model complexity does not increase with the number of edges. The
BDe score [13] is not relevant either, due to the assumption of independence between
parameters in the different tables, which does not hold in a L-DBN.

Therefore, we propose to maximize the non-penalized log-likelihood. Our restoration-
estimation algorithm is an iterative algorithm which alternatively updates estimates of
LGk→ and (θk, ψk) until a local maximum of P (D,LG→ | θ, ψ) is found, that is:

E step : θk+1, ψk+1 ← argmax
θ,ψ

logP (D,LGk→|θ, ψ),

R step : LGk+1
→ ← argmax

LG→
logP (D,LG→|θk+1, ψk+1).

These two iterative steps can be rewritten as follows:

E : θk+1 ← argmax
θ

logP (D|LGk→, θ), (1)

ψk+1 ← argmax
ψ

logP (LGk→|ψ),

R : LGk+1
→ ← argmax

LG→
[logP (D|LG→, θk+1) + logP (LG→|ψk+1)]. (2)
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In the first step, given a fixed labeled graph LGk→, both the parameters θk+1 of the
L-DBN and the parameters ψk+1 of the SBM are estimated by continuous optimization.
In the second step, given fixed parameters values, the labeled graph LGk+1

→ is updated
by solving a 0-1 Integer Linear Program (ILP) [16]. In practice, since the log-likelihood
is a decomposable score, it amounts to solving n 0/1 ILPs by defining for each vertex
as many variables (i.e. an exponential number in k) as potential parents sets [5]. How-
ever, the structure of real problems often allows to decrease the number of introduced
variables in the 0/1 ILP. In the next section, we illustrate this by instanciating the RE
algorithm on a problem of ecological interaction network learning, in which the number
of variables will only be quadratic in k.

4 Ecological Network Modeling

An ecological network describes interactions between species in a given environment.
The learning problem is that of learning this network from time series of observations of
the species. Interactions can be trophic (prey/predator), parasitic, competitive, ... They
can model positive or negative influence on the species survival. It is therefore possible
to label the edges of an ecological network with a ’+’ or a ’−’ label (absence of inter-
action is represented by an absence of edge). In practice, the main interactions between
species are trophic interactions. They structure the community into trophic levels that
are often known [21]. We now show how to take these labels and trophic levels into
account to model species dynamics in the L-DBN framework with SBM prior.

4.1 L-DBN Species Transition Probabilities

We assume that the species dynamics are observed at regular time steps, and that oc-
currence observations are available: dataset D corresponds to the observation of the
absence (xti = 0)1 or presence (xti = 1) of every species at time t ∈ {1, . . . , T}. In-
formation is also available on whether the observed area is protected (at = 1) or not
(at = 0). Labels of the edges in the associated graph LG→ can take 2 values: ’+’ or
’−’. An example of labeled ecological network with four species is shown in Figure 1
(right). Then, the definition of the TPT is based on the following assumptions:

(a) a species survives if at least one positive influence succeeds and all negative fail;
(b) a species with empty Par+(i,LG→) (for instance a species at the bottom of the

trophic chain) cannot disappear if it is protected and all the species inPar−(i,LG→)
are absent;

(c) a species with non empty Par+(i,LG→) cannot survive if all species are absent in
Par+(i,LG→);

(d) If i ∈ Par+(j,LG→), then i 6∈ Par−(j,LG→).

These assumptions form ”hard” knowledge, which limits the set of possible ecological
interaction networks, for a given observed dataset D. Then, the TPT of the L-DBN are

1 Here and in the following, upper case letters are used for random variables, and lower case
letters for a realization.
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defined from the vector of parameters θ = (ε, ρ+, ρ−, µ), where ε is a probability of
recolonization, ρ+, ρ−, are probabilities of success of positive and negative influences.
µ ∈ [0, 1[ is a penalty factor applied to recolonization and survival probabilities of
species when the area is unprotected. We describe only the transition probabilities to-
wards presence P (Xt+1

i = 1|Xt
i , a

t). All other transition probabilities are derived from
these. Two situations are possible depending on whether species i is absent or present
at time t:

(i) the probability for a species absent at t to colonize the observed area at t + 1 is
assumed fixed and independent of the presence of other species

P (Xt+1
i = 1|Xt

i = 0, at) = µ(1−at)ε. (3)

(ii) The probability for a species present at t to survive at t + 1 is the probability of
success of at least one positive influence (if needed) and the probability of failure of
all negative influences, and these interaction events are independent. It is expressed
as follows: if Par+(i,LG→) = ∅

P (Xt+1
i = 1|Xt

i = 1, xtPar−(i,LG→)\i, a
t) = µ(1−at) (1− ρ−)Nt

i,− . (4)

Else it is equal to µ(1−at)
(
1−

(
1− ρ+

)Nt
i,+

)(
1− ρ−

)Nt
i,− . (5)

When the area is unprotected (at = 0), the transition probabilities (3), (4) and (5)
depend on parameter µ, to account for the loss in recolonization/survival probability.

4.2 SBM Model of the Prior on Ecological Links

The (known) trophic level of species i is denoted TL(i)2. By convention, top predators
have the largest trophic level, while basal species have trophic level 0. Species feed on
species in lower trophic levels. So, it is more likely that there is a ’+’ edge from i to
j if TL(j) > TL(i), assuming that most ’+’ edges model a trophic relation. We will
assume here that all positive influences are prey-to-predator ones and that, furthermore,
the closer the trophic levels, the more likely i is a prey of j. This a priori knowledge
can be modeled by the following SBM, where the blocks are the trophic levels and the
block membership function f(i) is defined by TL(i):

P
(
G+
ij = 1

)
= 0 if TL(i) ≥ TL(j) and

eα∆ij

1 + eα∆ij
if TL(i) < TL(j).

where ∆ij = TL(i)− TL(j) and α > 0.
Negative influences represent different phenomena (negative influence of the preda-

tor on its prey, but also parasitism, competition...). We consider a simple probability
model for negative influences, only taking into account the relative position of trophic
levels.

If TL(i) < TL(j), P
(
G−ij = 1 | G+

ij = 1
)
= 0 and P

(
G−ij = 1 | G+

ij = 0
)
= β2,

If TL(i) = TL(j), P
(
G−ij = 1

)
= β2,

If TL(i) > TL(j), P
(
G−ij = 1

)
= β1.

2 Trophic levels are represented in Fig. 1, right: TL(1) = 0, TL(2) = 1, TL(3) = TL(4) = 2.
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with β1 > β2, to represent the fact that predator-to-prey influences are the most
frequent negative influences.

The vector ψ = (α, β1, β2) defines the prior on LG→.

5 Ecological Network Learning Algorithm

In this section, we derive a version of the generic Restoration / Estimation algorithm of
Section 3, specific to the L-DBN model of ecological network.

5.1 Expression of logP (D|LG→, θ)

To express the data log-likelihood, we distinguish the basal species (nb species) that
have non-empty Par+(i,LG→), from the other ones (the basal species b, which have
no prey). We also define the quantity Rt,d

+,d−

i,C equal to 1 if the species i is of class
C ∈ {nb, b} and at time t, N t

i,+ = d+, N t
i,− = d− and 0 otherwise. By convention, for

a species of type b, we setN t
i,+ = 0. We also assume that the maximum overall number

of incoming edges of any node i is fixed, equal to k. The log-likelihood of a dataset
D = {x1, . . . , xT }, for a given initial state x0, can be computed as3:

logP (D|LG→, θ) = logP (x1, . . . , xT | x0, a, θ,LG→) =

n∑
i=1

score(i),

where score(i) is the contribution of species i to the log-likelihood:

score(i) =

T−1∑
t=0

(1− xti) log(P t0(xt+1
i )) +

T−1∑
t=0

xti
∑

0≤d++d−≤k

log
(
P t,d

+,d−

1,+ (xt+1
i )

)
Rt,d

+,d−

i,nb

+

T−1∑
t=0

xti

k∑
d−=0

log
(
P t,0,d

−

1,b (xt+1
i )

)
Rt,0,d

−

i,b (6)

At time t , there is only one term among the three which is non-zero: either the one
corresponding to the probability of transition from xti = 0 to xt+1

i (P t0(x
t+1
i )) or from

xti = 1 to xt+1
i for non-basal species (P t,d

+,d−

1,+ (xt+1
i )) or from xti = 1 to xt+1

i for basal

species (P t,0,d
−

1,b (xt+1
i )). The probabilities in equation (6) are defined by equations (7)

and (8) :

log
(
P t0(x

t+1
i )

)
= xt+1

i at log ε+ (1− xt+1
i )at log(1− ε) (7)

+ xt+1
i (1− at) log(µε) + (1− xt+1

i )(1− at) log(1− µε).

log
(
P t,d

+,d−

1,C (xt+1
i )

)
= xt+1

i at log
(
P 1C
1→1(d

+, d−)
)
+ (1− xt+1

i )at log
(
P 1C
1→0(d

+, d−)
)

+ xt+1
i (1− at) log

(
P 0C
1→1(d

+, d−)
)

+ (1− xt+1
i )(1− at) log

(
P 0C
1→0(d

+, d−)
)
, (8)

3 PLG→,θ(x
0) will not be estimated.



10

where P a
tC

1→xt+1
i

(d+, d−) is the probability to transition from xti = 1 to xt+1
i for species

i of type C under action at, when it has d+ favorable and d− unfavorable species
extant. Those probabilities are described in (4) and (5). Note that these expressions are
linear functions of the variables {Rt,d

+,d−

i,C }, given the data {xti}, {at} and parameters
(ε, ρ+, ρ−, µ) of the model.

5.2 Restoration Step

Let us focus first on the graph update phase (2). If we ignore the SBM part for the
moment, the maximization of the first term in (2) can be decomposed into n indepen-
dent maximization problems (one per score(i)). Each maximization problem can be
expressed as a 0-1 ILP by introducing auxiliary variables. The auxiliary variables and
the linear constraints are provided in the appendix. The SBM term in expression (2)
is also decomposable: logP (LG→|ψ) =

∑
j score

SBM (j). The function scoreSBM

writes (provided LG→ only contains edges which are consistent with the SBM):

scoreSBM (j) =
∑

i,∆ij=0

g−ij log β2 + (1− g−ij) log (1− β2)

+
∑

i,∆ij<0

α∆ijg
+
ij − log(1 + expα∆ij ) + (1− g+ij)(g

−
ij log β2 + (1− g−ij) log (1− β2))

+
∑

i,∆ij>0

g−ij log β1 + (1− g−ij) log (1− β1) .

This expression is not linear in the variables {glij}. We linearize it by adding an
extra variable g+−ij equal to 1 if g+ij = 1 and g−ij = 1 and 0 otherwise. So doing, the
network optimization step (with or without SBM prior) can be performed by solving n
independent 0-1 integer linear programs.

5.3 Parameters Estimation Step

Recall that in the parameters update phase (1), parameters vectors θk+1 and ψk+1 can
be updated separately: The update of θ is performed using the interior point method for
non-linear programming [2]. For β1 and β2 the solution of the update is analytic:

βk+1
1 =

∑
(i,j),∆ij>0 g

−
ij

|{(i, j), ∆ij > 0}|
,

βk+2
2 =

∑
(i,j),∆ij≤0 g

−
ij(1− g

+
ij)∑

(i,j),∆ij≤0(1− g
+
ij)

.

The updated α is obtained as a (numerical) solution of the moment-matching equation:∑
(i,j),∆ij<0

∆ijg
+
ij =

∑
(i,j),∆ij<0

∆ij
expα∆ij

1 + expα∆ij
.
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6 Experiments

We considered ecological network learning in situations where the sample size is small
and we compared the behavior of 4 DBN learning methods corresponding to differ-
ent levels of embedded a priori knowledge. First the Restoration-Estimation algorithm
of Section 4 was applied to the L-DBN model of species dynamics 1) without addi-
tional knowledge (L-DBN-OK), 2) with a SBM prior (L-DBM-SBM), and 3) with 20%
of variables Glij known4 and no SBM prior (L-DBM-20K). The restoration step was
solved using the CPLEX solver. We also applied MIT [27] which optimizes a mutual
information test score and works with a full (non-parameterized) representation of the
TPT. For comparison purposes, we have enriched MIT with an edge-labeling method
using the notion of qualitative influence from [28] In qualitative influence, positive and
negative influences of a binary variable Y on a binary variable X is defined as follows:

Y
+→ X iff P (X = 1|Y = 1, Z) ≥ P (X = 1|Y = 0, Z),∀Z,

Y
−→ X iff P (X = 0|Y = 1, Z) ≥ P (X = 0|Y = 0, Z),∀Z,

where Z is the set of other variables influencing X . Replacing probabilities with data
counts, we used these definitions to (partially) label the structure learned by MIT (links
between variables for which counts do not satisfy any of the above conditions remain
unlabeled).

Synthetic networks We have generated ten synthetic networks of 20 species ac-
cording to a SBM model with α = 1/

√
20, β1 = α/2, β2 = β1/2. For each of these

networks, we have generated 10 data sets, a data set corresponding to a simulated tra-
jectory of length 30 of the species dynamics, with no protection action the first 12 years
and protection after. Values of the L-DBN parameters (ε, µ, ρ+, ρ−) were all set to 0.8.
The RE algorithm was applied to each data set. So we obtained 10 restored graphs for a
single synthetic one. We ordered learnt edges by their decreasing occurrence frequency
in these 10 restored graphs, and defined the aggregated graph of size x as the restored
graph composed of the x first edges in this ordering. Figure 2 shows the joint evolution
of the precision and recall of ’+’ and ’−’ edges when the number of edges in the ag-
gregated graph changes. Results for MIT are not reported because precision and recall
were close to zero, showing the difficulty to learn both a DBN structure and its TPT in
a non parameterized model, when data are scarce.

We observed that when incorporating a SBM prior in the learning procedure of a L-
DBN, fewer edges are learnt. Let us denote by xSBM the maximum number of edges in
the aggregated graph built from the 10 L-DBN-SBM restored graphs. When comparing
the aggregated graphs with xSBM edges for the different methods, we observed that
the one provided by L-DBN-SBM leads to the best precision and recall for ’+’ edges,
and to the best precision and recall when the two labels are not distinguished. Here
the SBM knowledge was more helpful than the knowledge of 20% of the edges in the
learning process. However, the L-DBN-SBM method was less efficient for learning
the ’−’ edges. This is not surprising since the prior knowledge embedded in our SBM
model is stronger for ’+’ edges than for ’−’ edges (it depends on the TL differences).

4 Known variables were selected uniformly at random.
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Fig. 2. Synthetic networks.Precision and recall for ’+’ (left) and ’−’(right) edges, for the L-
DBN-0K, L-DBN-SBM and L-DBN-20K learning methods. Plain lines are mean values: one dot
in these lines is obtained by averaging results for a given value of edges in the aggregated graph,
over the 10 data sets. Dotted lines are worse and best cases among the 10 data sets.

Real ecological network We applied the MIT, L-DBN-0K and L-DBN-SBM learn-
ing methods on data generated with a L-DBN with the same parameter values as above,
but for the real ecological network structure of the Alaskan food web [7]. This network
is composed of 13 species, that can be grouped into 5 trophic levels, and contains 21
’+’ edges and no ’−’ edges (see Figure 3 top left). Here also 10 data sets were used to
build an aggregated graph. The precision and recall reached for the aggregated graph
composed of all edges learnt at least once were respectively (0.47, 0.33), (0.26, 0.86)
and (0.49, 0.81) for MIT, L-DBN-0K and L-DBN-SBM. L-DBN-0K and L-DBN-SBM
both learn fewer ’−’ edges than ’+’ edges. However, the L-DBN-SBM algorithm pro-
vided more parsimonious graphs (35 edges instead of 85 for L-DBN-0K). Figures 3
(bottom left and right) illustrate the gain in integrating the SBM prior: for instance,
without SBM knowledge, the information that species do not feed on the same trophic
level can not be recovered from the data alone.

Fig. 3. Alaskan food web. Left: real network, with only ’+’ edges, Middle and Right: L-DBN-0K
and L-DBN-SBM aggregated graphs with 21 edges. blue edges are ’+’ edges, while red edges
correspond to edges which are learnt both as ’+’ and ’−’ edges.
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7 Conclusion

We proposed an approach to improve learning of a Dynamic Bayesian Network (DBN)
structure (without synchronous edges) when data are scarce. The approach combines the
definition of a family of parameterized DBN with labeled edges, an a priori Stochastic
Block Model (SBM) on the DBN structure and a Restoration-Estimation (RE) learning
algorithm. To define a parsimonious parameterization we make the assumption of iden-
tical transition probabilities tables for all variables submitted to the same number of
each possible type of influence. This is a restrictive but necessary assumption in situa-
tions where there is not enough data to learn more complex models. The proposed mod-
eling framework enables us to take into account expert knowledge to help the learning.
Our experiments show that by limiting the number of parameters describing the DBN,
and by introducing community structure knowledge via SBM, we can improve learning
quality compared to a method based on a full non-parameterized representation of the
DBN.

The RE algorithm is a greedy iterative two-steps algorithm. It includes a structure
improvement step modeled as n 0-1 integer linear programs, one per variable of the
DBN. This procedure is generic since the log-likelihood for a DBN can always be de-
composed as a linear function of variables describing the graph structure, as in [5], and
as soon as additional constraints on these variables are linear, ILP can be applied. Still,
for a specific L-DBN, it is worth deriving a specific ILP model, which will require
fewer variables, as we examplified on the problem of learning an ecological interaction
network from temporal data of presence/absence of species.

In the ecological network application, the L-DBN transition function is merely an
extension of a generic contact process model [12] to more than one influence type. It
can also be seen as a DBN with a causal independence model [14] for each transition
probabilities table, where each parent’s influence is either positive or negative as in a
qualitative BN model [28, 18]. The proposed model may seem simple compared to the
complexity on an ecological network. For instance, we assume identical strengths of
positive and negative influences for all species and stationarity of the interaction net-
work structure. The model could be straightforwardly extended to more than two labels,
in order to relax the first assumption. Stationarity is more critical and cannot be relaxed
without modifying the learning algorithm. Still, propagation by contact models are en-
countered in several other domains such as fire propagation, health management (dis-
ease propagation, [25]), social networks (rumor propagation, [11]), computer science
(network security). Therefore (probably with an adaptation of the SBM prior model)
the L-DBN model for ecological network and the associated RE algorithm could be
useful for learning interaction networks in a wide range of applications.

Appendix: Maximization of the Data Log-likelihood as a 0-1 ILP

We describe how the problem of maximizing the log-likelihood logP (D|LG→, θt+1)
over the variables glij defining a DBN structure can be expressed as n independent 0-

1 ILP. The expression of the likelihood is an expression of the variables
{
Rt,d

+,d−

i,C

}
which are themselves functions of the variables glij , as well as of the observed data D.
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In the following we show how to define the binary variables
{
Rt,d

+,d−

i,C

}
from linear

constraints involving the binary variables {glij}, the data D and some other auxiliary
binary variables. So doing, we will have defined one 0-1 integer linear program per
species, which can be solved by classical solvers. The 0-1 integer linear program for a
species i describes the vertices pointing to i that maximize the quantity score(i). The
following auxiliary binary variables are defined for a particular species i.

– Non-basal species:
{
hnbi
}

. hnbi = 1 iff Par+(i,LG→) 6= ∅. These variables are
defined for all i ∈ {1, .., n} by the constraints described in (9).

– Lower bound on the number of extant parents:
{
M t,d
i,l

}
.M t,d

i,l = 1 iff N t
i,l ≥ d (the

species i has at least d parents of label type l extant at time t). k is the maximum
allowed number of parents of any label. These variables are defined for all i ∈
{1, .., n}, t ∈ {1, .., T}, d ∈ {0, .., k}, l ∈ {+,−} by the constraints in (10).

– Upper bound on the number of extant parents:
{
νt,di,l

}
. νt,di,l = 1 iff N t

i,l ≤ d (the
species i has at most d parents of label type l extant at time t).These variables
are defined for all i ∈ {1, .., n}, t ∈ {1, .., T}, d ∈ {0, .., k}, l ∈ {+,−} by the
constraints in (11).

– Number of extant parents:
{
Λt,di,l

}
. Λt,di,l = 1 iff N t

i,l = d (species i has exactly
d parents of label type l extant at time t). These variables are defined for all i ∈
{1, .., n}, t ∈ {1, .., T}, d ∈ {0, .., k}, l ∈ {+,−} by the set of constraints in (12).

Now, we are ready to write the linear constraints defining the binary variablesRt,d
+,d−

i,C .

Recall that Rt,d
+,d−

i,C = 1 if and only if the species i is of type C ∈ {nb, b} and has ex-

actly d+ parents of type + and d− parents of type− extant at time t. Thus,Rt,d
+,d−

i,nb = 1

iff hnbi = Λt,d
+

i,+ = Λt,d
−

i,− = 1. Rt,d
+,d−

i,b = 1 iff hnbi = 0, Λt,d
+

i,+ = Λt,d
−

i,− = 1.

Variables
{
Rt,d

+,d−

i,nb

}
are defined by the set of constraints (13-14):

∀i, j ∈ {1, .., n},

hnbi ≤
n∑
j=1

g+ji (9)

∀i ∈ {1, .., n}, t ∈ {1, .., T}, d ∈ {0, .., k}, l ∈ {+,−},

M t,d
i,l · (d+ 1)−

∑n
j=1

(
glji · xtj

)
≤ 1

M t,d
i,l · (k + 1− d)−

∑n
j=1

(
glji · xtj

)
> −d

(10)

νt,di,l · (k + 1− d) +
∑n
j=1

(
glji · xtj

)
≤ k + 1

νt,di,l · (d+ 1) +
∑n
j=1

(
glji · xtj

)
> d

(11)

Λt,di,l −M
t,d
i,l ≤ 0 ; Λt,di,l − ν

t,d
i,l ≤ 0 ; Λt,di,l −M

t,d
i,l − ν

t,d
i,l ≥ −1 (12)

∀i ∈ {1, .., n}, t ∈ {1, .., T}, d+ ∈ {0, .., k}, d− ∈ {0, .., k − d+},

Rt,d
−

i,b ≤ Λ
t,d−

i,l ; Rt,d
−

i,b ≤ 1− hnbi ; Rt,d
−

i,b ≥ −hnbi + Λt,d
−

i,− (13)
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Rt,d
+,d−

i,nb ≤ Λt,d
+

i,l ; Rt,d
+,d−

i,nb ≤ Λt,d
−

i,l ; Rt,d
+,d−

i,nb ≤ hnbi
Rt,d

+,d−

i,nb ≥ hnbi + Λt,d
+

i,+ + Λt,d
−

i,− − 2
(14)

At this stage, all the variables needed for the calculation of score(i), defined in
(6), have been introduced. We incorporate further constraints in the ILP formulation to
model hard expert knowledge about the ecological network. The species i has at most
k parents (constraint (15)). There exists at most one edge from j to i (constraint (16)).
If species i is non-basal, it will become extinct at time t + 1 if it has no prey at time t
(constraint (17)). If the species is basal, it will remain extant at time t+ 1 if it is extant
at time t and has no negative influence (constraint (18)).

n∑
j=1

∑
l∈{+,−}

glij ≤ k,∀i = 1, . . . , n (15)

g+ji + g−ji ≤ 1,∀i = 1, . . . , n; j = 1, . . . , n (16)

Rt,d
+=0,d−

i,nb · xt+1
i = 0,∀i, t, d− (17)

Rt,d
+,d−=0

i,b · xti · (1− xt+1
i ) = 0,∀i, t, d+. (18)

The problem of finding the ecological network structure which optimizes the log-
likelihood is now modeled as a set of n 0-1 integer linear programs, whose variables
are all the {glij ,M

t,d
i,l , ν

t,d
i,l , Λ

t,d
i,l , R

t,d+,d−

i,V } with constraints (9–18).
Note that the total number of variables and constraints of the 0-1 linear program for

a species is linear in n and quadratic in k. Thus, the complexity of the graph update
phase is ”simply” exponential in n.
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