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Abstract. Most user-based websites such as social networks (Twitter, Facebook)
and e-commerce websites (Amazon) have been targets of group fraud (multiple
users working together for malicious purposes). How can we better rank mali-
cious entities in such cases of group-fraud? Most of the existing work in group
anomaly detection detects lock-step behavior by detecting dense blocks in ma-
trices, and recently, in tensors. However, there is no principled way of scoring
the users based on their participation in these dense blocks. In addition, exist-
ing methods do not take into account temporal features while detecting dense
blocks, which are crucial to uncover bot-like behaviors. In this paper (a) we pro-
pose a systematic way of handling temporal information; (b) we give a list of
axioms that any individual suspiciousness metric should satisty; (c) we propose
ZOORANK, an algorithm that finds and ranks suspicious entities (users, targeted
products, days, etc.) effectively in real-world datasets. Experimental results on
multiple real-world datasets show that ZOORANK detected and ranked the suspi-
cious entities with high accuracy, while outperforming the baseline approach.

1 Introduction

User-based systems, such as web-services like Amazon, Twitter or corporate IT net-
works, have become popular targets of fraud or attacks. A popular research problem
is to detect the spammers/fraudsters/attackers that are trying to attack a given system
[3,11,13,21]. Similarly, in the social networks setting, there are multiple websites where
anyone can buy fake Facebook page-likes or Twitter followers. In all these cases, such
fraudulent activities take the form of “lockstep” or highly synchronized behavior: such
as, multiple users liking the same set of pages on Facebook, or multiple users following
the same users almost at the same time on Twitter [3]. Such behavior results in dense
blocks in matrices/ tensors. The reason behind these blocks is intuitive, as most of the
fraudsters have constrained resources (accounts, IP addresses, time, etc.) and they reuse
their resources to add as many fraudulent activities as possible to maximize their profits.

Various methods have been proposed to identify users exhibiting such behavior,
which involve finding dense blocks in tensors [11,21] or clustering in subgraphs [3,23].
However, for security experts monitoring the systems, it is imperative to know which
users are more suspicious than other users, since it directs their attention to such users
for further analysis or actions. In this paper we propose a method that ranks entities
effectively (see Figure 1) for a security analyst to view. Consider Figure 2; all three



users, A, B and C are participating in dense blocks (as they are part of the 2 rectangles),
however their contribution towards the suspiciousness of each block is different. A core
question we answer in our paper is as follows:

Informal Problem 1 (Individual Suspiciousness Metric) Given multimodal temporal
data in the form of (userld,productld,. . . ,timestamp), how can we find and score suspi-
cious entities (e.g. users, activities, products, days,etc.)?

Problem Setup (User x Product x Rating x Days (User x InterArrival Time)
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Fig. 1: Effectiveness of ZOORANK on real world datasets. (Top Left) Perfect
precision-recall on software marketplace dataset. (Top Right) ZOORANK obtains good
precision recall on Reddit dataset. (Bottom Left) Top 100 suspicious users found
by ZOORANK show high synchronicity (formed groups) in rating and reviewing top
suspicious products. (Bottom Right) The suspicious users (bottom; red) detected by
ZOORANK for Reddit dataset show irregular spikes in inter-arrival time distribution, as
compared to all the users (top; blue).



In addition, almost all the social networking websites and services have timestamps
associated with every user activity. However, few approaches in the literature consider
temporal features [3]. These timestamps can be useful for detecting fraudsters. How-
ever, it is not clear in dense block detection literature, in what ways we can incorporate
the temporal information available to us. In this paper we answer the following question:

Informal Problem 2 (Temporal data handling) Given data in the form of (cat 1, cat
2, ..., timestamp), how can we generate features from timestamps useful for detecting
fraudsters? Here cat 1,cat 2 are any categorical features (generally userld, productld,
activityld, ratings, etc.)
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Fig.2: How to rank users based on their suspiciousness, matching human intuition (A
>B >C)?

We propose ZOORANK, a novel approach for successfully scoring entities based on
their participation in suspicious dense blocks. We introduce a set of axioms that any
ideal individual scoring metric should satisfy. We show theoretically, that our proposed
scoring function satisfies the proposed axioms. Additionally, ZOORANK also provides
a framework to make good use of temporal information that generally exists in all the
real-world datasets. As shown in Figure 1, ZOORANK successfully finds suspicious
users in multiple real-world datasets (Software Marketplace data and Reddit data) with
high accuracy. Additionally, the suspicious users found by our method showed clearly
anomalous patterns. In Figure 1(Bottom Left), we see that multiple users are working in
groups to target certain products. Similarly, in Figure 1(Bottom Right), the suspicious



users detected by our method show extremely regular and bot-like behavior resulting in
spikes in the inter-arrival time distribution (difference in seconds between consecutive
posts).

Our main contributions are as follows:

— Theory
e Axioms: We propose a set of axioms that an individual scoring metric for mea-
suring contribution of a user towards a suspicious block should follow.
e Metric: We propose an individual suspiciousness scoring metric.
o Proofs: We further prove that our proposed individual metric follows all the
proposed axioms.

— Temporal Features: We provide a way of creating temporal features from the
timestamp information present in the data.

— Multimodality and Effectiveness: The proposed approach ZOORANK can take
into account various features, including temporal features. The approach detects
suspicious entities in all modes of the data. We tested ZOORANK on various real-
world datasets and were able to find suspicious entities with high accuracy, reveal-
ing interesting fraud patterns.

Reproducability: Our code and link to the datasets used is available at https://
goo.gl/rrvDTx

2 Background and Related Work

A lot of work exists in the literature which aims at finding dense blocks, but none of the
methods present a way of scoring the individual entities in dense blocks.

Detecting dense blocks: Densest-subgraph identification (i.e., the problem of find-
ing a subgraph with maximum average degree) has been broadly studied in theory [5,8].
These theoretical results have been extended and applied to anomaly and fraud detec-
tion [11,20] since dense subgraphs (dense blocks) in real-world graph data tend to indi-
cate fraudulent lock-step behavior, such as follower-buying services in Twitter. Spectral
methods, which make use of eigen and singular value decomposition, also have been
used for detecting dense subgraphs corresponding to ‘cut-and-paste’ bibliography in
patent graphs [18], lock-step followers [13] and small-scale stealthy attacks [19] in so-
cial networks. Other approaches for dense-subgraph detection include co-clustering [3]
and belief propagation [17]. Recently, dense-block detection in multi-aspect data also
has been researched [12,21] for spotting groups synchronized in multiple aspects, such
as IPs, review scores and review keywords. For our experiments, we use the best per-
forming dense subgraph detection method M-Zoom [21]. The existing methods, how-
ever aim at only finding blocks, and do not provide a rank-list of users to inspect ac-
cording to their suspiciousness.

Scoring Anomalies: Evaluating the anomalousness or suspiciousness of individ-
uals is complementary to detecting dense blocks, which correspond to group activi-
ties. A widely-used approach is to detect outliers. Outlier detection methods are di-
vided into parametric methods assuming underlying data distribution [10] and non-
parametric methods using local features, such as distances to neighbors [14] and local



density [4, 15]. For graph data, on the other hand, various approaches, based on mini-
mum description length [6, 9], neighborhood information [22], egonet features [2] have
been proposed for scoring nodes. Many methods do exist in the literature, which use
temporal information such as inter-arrival time [7, 16]. These features have been used
to successfully detect bot-like behavior [7].

Our proposed method ZOORANK scores each entity (individual-scoring) in any of
the dimensions (multimodal) of the tensor based on the entity’s participation in the sus-
picious dense blocks (dense-blocks). It provides ways of transforming temporal data
into useful features and thus handles both numerical and categorical features. A com-
parison between ZOORANK and other algorithms is summarized in Table 1. Our pro-
posed method ZOORANK is the only one that matches all specifications.
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Table 1: Comparison of other methods and their features

3 Preliminaries and Problem Definition

3.1 Problem Definition

Definition 1 (K-way timed tensor) A K-way timed tensor is a higher-order matrix
containing entries of the form (category 1, category 2, ....,category K, timestamp).

Many types of data including “like” data from Facebook (Userld, Pageld, Timestamp),
“follow” data from Twitter (Userld, Followeeld, Timestamp), activity log from an or-
ganization (Userld, Operationld, Timestamp) or network data (Source IP, Source Port,
Destination IP, Destination Port, Timestamp) all can be formulated as a K-way timed
tensor. We now give a precise definition of the problem statements.



Problem 1 (Temporal Features Handling) Given a K-way timed tensor A, how can
we effectively transform the temporal features associated with A to generate a categor-
ical tensor X ?

Symbol Definition
X Input categorical L-way tensor
Yy Dense block within tensor X

Ny, Size of ith mode of block Y
m(i) |Mode of entity i

Py Density of block Y

Cx Sum of the entries in X
Cy Sum of the entries in Y

Cy (i) |Mass of entity 1in'y

Vy Volume of the block Y

90 Block suspiciousness scoring function

70 Individual-Suspiciousness scoring function
0y(i) |Block level suspiciousness of entity i in block )
B List of suspicious dense blocks

M Number of suspicious blocks to be considered

Table 2: Symbols and Definitions

Problem 2 (Individual-Suspiciousness) Given a L-way categorical tensor X of size
Nj X Ny x - -+ x N, with non-negative entries, compute a score function fx (i), which
defines the suspiciousness of entity i in the m (i)' mode of X with respect to the overall
tensor X.

3.2 Block Level Suspiciousness Metrics

In this paper, we consider three block-level suspiciousness metrics although our pro-
posed method is not restricted to them. The metrics are Arithmetic (g,,;), Geometric
(9geom) and Density (gsusp). Arithmetic computes the arithmetic average mass of a
sub-block ) of a tensor X. Similarly, Geometric metric is the geometric average mass
of the block. The Density metric is the KL-divergence (Kullback Leibler) between the
distribution of the mass in the sub-block with respect to the distribution of the mass in
the tensor. These metrics are explained in the following sections.

3.3 Axioms

In this sub-section, we establish axioms that a good score function f = fx (i) should
satisfy. The suspiciousness of an entity should be based on its participation in dense
blocks B. Hence, our first two axioms govern the scores with respect to a single block
Y € B: our third axiom then governs how the single-block scores are combined to form

fa(d).



Let py be the density (i.e. mass divided by volume) of ), and py,(i) be the density
of the slice of ) defined by entity 4. Similarly, let Cy (7) denote the mass of that same
slice. The entire list of symbols is shown in Table 2.

Axiom 1 (Mass) If an entity a has more mass than entity b in a block and given the
fixed size of block in both the modes m(a) and m(b), then entity a is more suspicious.
Formally

IF Cy(a) > Cy(b), AND N3 = NJ'®) THEN 6y (a) > 6y(b)

This is represented in Figure 2. See how entities are ranked by suspiciousness in the top
right block (User A > User B > Activity D).

Axiom 2 (Concentration) Given two entities a, b in different modes m(a), m(b), where
number of entities in one mode ( NJ(,m(a)) ) is less than the number of entities in the sec-

ond mode ( Na(,m(b)) ), then for fixed density, entity a is more suspicious than entity b.
Formally,

m(a m(b
IFNY'W < Ny AND - py = py(a) = py(b),

THEN (53}(0,) > 53}(())

This is represented in Figure 2. See how entities are ranked by suspiciousness in the
lower left block (User C > Activity E).

Axiom 3 (Monotonocity) If for every block, entity a has higher suspiciousness than
entity b, then entity a has higher overall suspiciousness.
Formally,

IF 6y(a) > Sy(b) VY € B,THEN fx(a) > fr(b)

3.4 Shortcomings of Other Metrics

While these axioms are simple and intuitive, many other candidate metrics are not able
to satisfy them. We consider some of them, and show why they fail.

Block Score: One simple metric to consider is the block suspiciousness score itself.
The metric is to assign each individual the maximum block suspiciousness score out of
all the blocks it is part of. The metric doesn’t change if the two entities have different
contributions to the block, and hence fails Axiom 1 (Mass) and Axiom 2 (Concentra-
tion).

SVD-score: Any matrix A can be decomposed using SVD decomposition as fol-
lows: A = UXVT. Each of the singular values in X represents the singular value
related to a dense block that exists in the dataset. The metric here is the score of the
maximum component for each user. This metric would again fail Axiom 1 (Mass) and
Axiom 2 (Concentration).

Average 0-Block Score: Another proposed metric could be the average of all the
contributions by the given entity to all the suspicious blocks. The contribution to a block



is computed as the difference in the suspiciousness between the block and the block
after removing the specified entity. This statistic fails to satisfy Axiom 3 (Monotonocity)
as if entity 1 has higher suspiciousness in 2 blocks than entity 2, but entity 2 exists only
in one of the blocks, then the mean statistic is ambiguous.

As we show above, the metrics based on aggregation of block statistics do not work.
In the following section, we propose ZOORANK, a scalable and effective method for
finding and scoring suspicious individual entities in multimodal temporal data.

4 Proposed Approach: ZOORANK

4.1 Temporal Feature Handling

As mentioned, any data from a social networking website or a web service can be
represented as a K-way timed tensor. We propose a way to handle such tensors by
converting the numerical timestamp mode into interpretable categorical features. We
propose to generate 0*"-order, 1°*-order, and temporal folding features.

— 0'"-order features: The 0'" order features bucketize the timestamp into number of
days, hours, minutes, etc. passed since the first observation was made. The temporal
resolution can be chosen by practitioners based on the typical level of temporal
variation present in their dataset.

— 1%t-order features: Inter-arrival time is defined as the time interval between 2 con-
secutive timestamps of the same user. [7] found that bots tend to display regular
inter-arrival time behavior such as performing an activity every exactly 5 minutes,
due to automated scripts. To capture this pattern, we propose 1°t-order features,
which is the log-bucketized inter-arrival time between 2 consecutive operations of
a user (generalizable to any entity).

— Temporal folding features: We propose another way to detect fraudsters showing
periodic behavior, which are common in bot-like behavior. For instance, a group of
anomalous users might try to perform multiple login activities only from Wednes-
day 10 PM to 11 PM, or only on a specific day of the week. We work with 3 such
features: 1) day of the week, 2) hour of the day and 3) hour of the week. We call
these features temporal folding features.

4.2 Proposed Metric

Our metric is based on the J-contribution of each entity towards the block suspicious-
ness score. We first define the J-contribution for a given entity ¢ in mode m(i) of a
specific block ) € B, where B is a list of blocks. We denote this by 4y ()

Definition 2 (Entity’s Block-level Suspiciousness (0, (i))) We define dy (i) as the dif-
ference between the suspiciousness score of block Y and block Y after removing entity
i from the block i.e., 6y (i) = g(¥) — g(Y \ ©)



We need to aggregate the §-metric over the entire list of blocks B, in such a way that the
given axioms are satisfied. We propose two metrics both of which satisfy the given ax-
ioms. The first metric is the sum of the d-contributions, and the second is the maximum
of the d-contributions. We define the maximum metric as follows:

1) = max(dy (s

Fxi) = max(oy ()

We empirically found that the maximum metric performs the best on the real-world
datasets, and hence for the rest of the paper, all references to the proposed metric is for
the maximum version of the metric.

4.3 Algorithm

After handling the temporal features, we produce a categorical tensor X'. Algorithm 1
defines the outline of ZOORANK. The first step is to compute suspicious blocks for the
given tensor X'. To compute suspicious blocks, any existing method for block detection
can be used.

We first find the M top suspicious dense blocks as determined by g (Line 1), where
g is one of the metrics defined in Section 3.2. These top M suspicious blocks are stored
in the list B. For every entity ¢ that has occurred at least once in any of the blocks
in B, we compute the individual suspiciousness score function f. This score function
captures the contribution of a particular entity towards making the block suspicious. To
do this, we compute the marginal contribution of each entity towards that block. This is
equivalent to removing the entity ¢ from the block, and re-computing the suspiciousness
score (Lines 6-7). The difference between the new suspiciousness score and the original
suspiciousness score is the marginal contribution of entity <. We compute the marginal
contribution of each entity ¢ over all the blocks (Lines 4-8). We define the individual
suspiciousness score of the entity ¢ as the maximum of the marginal contributions of
entity ¢ (Line 9). Another potential metric is to replace the maximization in Line 9 by
the sum function. We conduct experiments with that metric as well.

This formulation of the scores fx (i) satisfies intuitively reasonable properties, namely
our axioms defined in Section 3.3:

Theorem 1. The scores fx (i) computed by Algorithm 1, using any of the metrics gar;,
Jgeo, OF Jsusp, Satisfies Axioms 1 to 3.

Proof. :We first start by defining some of the standard block suspiciousness methods as
follows:

gari(yvx) = Cy/(ZNgi/L)

ggeo(y» X) = Cy/(V;/L)
gsusp(y7X) = Vy : D(pprX)

where D(py||px) = px — py + py log %'



Data: Tensor X, block scoring function g, number of blocks to consider M, mode j to
consider

Result: Individual scores for each entity ¢ over the entire tensor : fx (¢)

1 B = ComputeDenseBlocks(X', M, g)

2 for each entity i € N; do

3| 4=

4 for Y € Bdo

5 if i € ) then

6 Create new block )’ by removing the entries of entity 4

7 ‘ Append (9(Y) — g()")) to &

8 end

9 f)( (Z) = max(éi)

10 end

11 Sort and output fx (7)

Algorithm 1: ZOORANK: Detecting Suspiciousness Individuals

ZOORANK satisfies Axiom 1 (Mass)
If we fix the block’s dimensions le,7 . ,NJL,, all three metrics above strictly increase
the mass of the block (i.e. C'y); this can be inferred directly from the form of g,,; and

Jgeo»> and for ggyp.
As Cy(a) > Cy(b), thus Y \ @ has lower mass than ) \ b, and since g is strictly
increasing in mass (for fixed block dimensions), we get g(V\ a) < g(J\ b). Therefore:

dy(a) =9(Y) =gV \a) >g(¥) —g(Y\?b)
= 6y(b)
ZOORANK satisfies Axiom 2 (Concentration)
Using the same reasoning as above, it suffices to show g() \ a) < g(¥ \ b). Note that

Ng’ @ < N;n ®) = Vina < Vyyp (since removing from a smaller mode decreases the
volume more). Consider each metric gari, ggeo, aNd Gsusp S€parately:

— case 1: g,i.
Here Y \ a and Y \ b have the same sum of block dimensions, and Cy\a = py -

Vyva < py - Vy\b = Cy\p 50 that g4, (Y \ @) < gari (Y \ D).
- case 2: ggeo.

_ /Ly _ /Ly _ - :
Note that ggeo(V) = Cy/ (V3 ") = py - Vy/(V3,7) = py - V3, * . Thus:

Jgeo(Y \ @) = py - (Vy\a)% < py- (Vy\b)% = ggeo(Y\ b)

— case 3: goysp-
Isusp(V \ @) = Vyna - D(pyllpx) < Voo - D(pyllpx) = gsusp(Y \ b)

ZOORANK satisfies Axiom 3 (Monotonocity)

fx(a) = maxdy(a) > maxdy(b) = fx(b).
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Experiments

In this section, we conducted experiments to answer the following questions:

51

Q1: How effectively does ZOORANK find suspicious entities across all modes?
Q2: How generalizable is ZOORANK over different datasets?
Q3: Does ZOORANK scale linearly with size of the data ?

Datasets

We used various real-world datasets including a software marketplace dataset, a dataset
from a popular social news aggregation website (Reddit), a dataset about Indian elec-
tions from Twitter, and a research lab’s intrusion detection dataset.

Software Marketplace Dataset (SWM): We used the SWM dataset that was used
previously by [1]. The dataset contains the reviews for all the products (software)
under the entertainment category of the marketplace. The dataset contains 1,132,373
reviews from 966,839 unique users for 15,094 products. Each review has a rating
from 1 to 5, and the timestamp on which the review was posted. The dataset, thus
is in the format (Userld, Productld, Rating, Timestamp). Previous studies [1, 23]
manually annotated ground truth labels for suspicious users, which we considered
as our ground truth.

Reddit Dataset: Reddit is a social news aggregator website, which allows users
to post, comment on, upvote and downvote stories. The dataset was collected and
analyzed by [7]. The dataset contains 1,020,834 user comments for 1,036 users. The
Reddit dataset is in the form (Userld, #Upvotes, #Downvotes, Length, Timestamp).
The dataset has information about ground truth suspicious user accounts.

DARPA Intrusion Detection: The DARPA intrusion detection dataset contains
a sample of network data for the US Air Force laboratory. The dataset contains
records in the format (Source IP, Destination IP, Timestamp). Further, it also con-
tains labels for anomalous connections. For ground truth, we considered any source
IP address that participates in at least 10 such anomalous connections, and any des-
tination IP address that participates in at least 400 such connections. We altered this
definition for ground truth thresholds and still achieved similar results as mentioned
in the paper.

Indian Elections 2014 Dataset: We collected tweets from 2014 Indian Elections.
We crawled all the tweets from the 10% Sample API (Decahose). All the tweets
contain the top 5 hashtags on Indian Elections per week. We further considered
only those users who have at least 2 tweets in our dataset. This led us to a dataset
of tweets from March, 2014 to May, 2014 consisting of 10,786 users.

Simulated Dataset: We also tested our approach on a simulated dataset. For simu-
lation, we used a realistic way of generating user-timestamps [7], then for each of
the timestamp, we added activities based on a Poisson distribution. We simulated
3 blocks, comprising of 300, 400 and 200 genuine users respectively, where each
block has different parameters for the activity Poisson distribution. For the suspi-
cious blocks, we simulated three blocks for 50, 25 and 25 users respectively. The



first block does the most popular activity over the entire duration of the simula-
tion and with random inter-arrival times. The second and third block do the second
most and third most popular activities, respectively, at a steady inter-arrival time of
1 minute on a single day.

Experimental Settings: All our experiments were conducted on a machine on In-
tel(R) Xeon(R) CPU W3530 @ 2.80 GHz and 24 GB RAM. For all our experiments,
we chose M = 30 and used M-Zoom [21] for dense block detection. We created mul-
tiple tensors based on different resolutions of time features (such as day of week, hour
of the day, Inter-arrival time (in seconds, bucketized), etc.). However, we reported only
the best accuracy obtained. The choice of what tensor to use, what block-level metric
to use, and what value of M is appropriate, is for the practitioner to decide and depends
on the type of data, on which the method is being applied.

5.2 Ql. Effectiveness of ZOORANK

To test the effectiveness of ZOORANK, we compare our ranking of the suspicious enti-
ties with the ground truth suspicious users in our datasets. We further test the accuracy
of our method on the SWM dataset. For software marketplace, we experimented with
different versions of temporal features. Note that our algorithm achieves 100% accuracy
in identifying suspicious users in the SWM dataset. From Figure 3a, we observed that
adding the inter-arrival time feature increased the accuracy of the method. Our algo-
rithm can rank entities in multiple modes; hence, we also tried to rank the products on
basis of their suspiciousness. Though we do not have ground truth for which products
were suspicious, we analyzed the top 5 suspicious products in Table 3b. We used the
number of reviews by ground truth fraudsters as an indicator for suspiciousness. It can
be observed that all the suspicious products are popular (high number of total reviews)
and have also been targeted significantly from fraudsters (high number of fraud users).
We also noticed that most of the reviews by fraudsters were highly synchronized and a
large majority came on a single day (Figure 3c).

5.3 Q2. Generalizability of ZOORANK

We tested our method on multiple real-world datasets. In Table 3, we present our accu-
racy on each dataset. We observed that using maximum of the marginal contributions
is better than using sum for all of the cases. Further, we also compared our method
with a baseline approach. We define the following baseline: Block Score: defined as
the maximum of all block suspiciousness scores a block is part of. From Figure 4, it can
be observed that our approach clearly is better than the mentioned approach.

For Indian elections data, we did not have any ground truth. We extracted the top 100
suspicious users and evaluated them manually. The results for top 100 suspicious users
are shown in Figure 5. The user ids are sorted by their suspiciousness score, and plotted
on the scatter plot along with top suspicious hashtags. Figure 5 clearly shows groups of
suspicious users. It is evident that the first two users are “hashtag hijackers”. These two
users tweeted spam messages with other hashtags but also focussed on generic hashtags
related to the Indian elections. Both of these users have an identical behavior, which
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Fig.3: ZOORANK is effective. (a) It gives nearly 100% accuracy while identifying
suspicious users in the SWM dataset. (b) ZOORANK marks products reviewed by known
fraudsters as suspicious. (c) Product #2 received nearly all of it’s reviews by fraud users
on one single day.

Dataset |F1-Score(SUM)|F1-Score(MAX) Tensor
Reddit 0.62 0.67 User x Inter-Arrival Time (IAT)
SWM 0.98 1.0 User x Product x Rating xDay x IAT
DARPA
(SrcIP Mode) 0.97 0.988 SrcIP x DstIP x Day x IAT
DARPA
(DstIP Mode) 0.29 0.37 SrcIP x DstIP x Hour x IAT

Table 3: ZOORANK is generalizable over multiple datasets, and multiple modes that
exist in the datasets.

imply they do follow “lock-step” behavior. The second group of users were tweeting
hashtags related to themselves and also generic hashtags related to the elections (“self-
promoters”). We also spotted the user who tweets out all the trending topics at regular
intervals, possibly through automated scripts (“trending topic aggregator’”). We believe
that the remaining users are users who were discussing indian elections a lot and were
influencers in the political discussion. On further analysis, 20 users out of the 100 users
were already suspended by Twitter. Thus, our algorithm was able to identify users that
were considered spam by Twitter but also users that were missed by Twitter algorithm
(“self-promoters”) but were clearly malicious.

5.4 Q3. Scalability of ZOORANK

In this section, we evaluate the scalability of the ZOORANK. We measure the effects of
the number of blocks and the number of records on the runtime of ZOORANK. To study
the effect of the number of records, we generated the dataset with given number of
entries in 3 dimensions, where cardinality of each dimension is 10°. For all our results,
we used arithmetic metric and operated on the most suspicious 30 blocks. The results
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Fig.4: ZOORANK is generalizable. ZOORANK outperforms the baseline across differ-

ulated Dataset

ent modes (see (a) and (b)) and across multiple datasets (see (c) and (d))

are shown in Figure 6a, showing that our method scales linearly both in the data size and
the number of blocks searched for. For the effect of the number of blocks, we generated
a dataset with 10# records with a similar number of entries in each dimension.

6 Conclusions

In this paper, we proposed a set of axioms that a given individual suspiciousness scoring
metric should follow. We presented such a metric that satisfies all the proposed axioms.

Specifically, our contributions are as follows:

— Individual-Suspiciousness Metric: We propose a suspiciousness metric which
scores each entity participating in dense blocks. The proposed criteria fy (i) sat-

isfies intuitive axioms.

— Temporal Features: The proposed method provides ways to transform the numer-
ical timestamp mode to information rich categorical temporal features.

— Effectiveness: The proposed method ZOORANK was successfully tested on various
real-world datasets. It scored the suspicious entities with high accuracy, and also
uncovered interesting fraud patterns.
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Fig. 5: ZOORANK identifies fraudulent suspicious behavior in Twitter: Top 100 sus-
picious users, and top hashtags as identified by ZOORANK.
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Fig. 6: Scalability of ZOORANK (a) ZOORANK scales linearly with the number of
records. (b) ZOORANK scales linearly with the number of blocks we want to find.

— Scalability: The method is linearly scalable with the size of the data and can be
used for big-data problems (see Figure 6).
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