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Abstract. Class imbalance is a challenging issue in practical classifi-
cation problems for deep learning models as well as traditional models.
Traditionally successful countermeasures such as synthetic over-sampling
have had limited success with complex, structured data handled by deep
learning models. In this paper, we propose Deep Over-sampling (DOS), a
framework for extending the synthetic over-sampling method to the deep
feature space acquired by a convolutional neural network (CNN). Its key
feature is an explicit, supervised representation learning, for which the
training data presents each raw input sample with a synthetic embedding
target in the deep feature space, which is sampled from the linear sub-
space of in-class neighbors. We implement an iterative process of training
the CNN and updating the targets, which induces smaller in-class vari-
ance among the embeddings, to increase the discriminative power of the
deep representation. We present an empirical study using public bench-
marks, which shows that the DOS framework not only counteracts class
imbalance better than the existing method, but also improves the per-
formance of the CNN in the standard, balanced settings.

Keywords: Class Imbalance, Convolutional Neural Network, Deep Learn-
ing, Representation Learning, Synthetic Over-sampling

1 Introduction

In recent years, deep learning models have contributed to significant advances
in supervised and unsupervised learning tasks on complex data, such as speech
and imagery. Convolutional neural networks (CNNs), for example, have achieved
state-of-the-art performances on various image classification benchmarks [27, 8].
One of the key features of CNN is representation learning, i.e., the hidden layers
of convolutional neural network generates an expressive, non-linear mapping
of complex data in a deep feature space [19, 12]. Such features are shown to
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be useful for other classification models or similar classification tasks [2, 13],
enabling further means of enhancements such as multi-task learning [7].

The applications of deep learning, meanwhile, encounter many practical chal-
lenges, such as the cost of preparing a sufficient amount of labeled samples. The
problem of class imbalance arises when the number of samples significantly differ
between two or more classes. Such imbalance can affect the traditional classifi-
cation models [11, 1, 17] as well as deep learning models [14, 15, 28], commonly
resulting in poor performances over the classes in the minority. For deep learning
models, its influence on representation learning can deteriorate the performances
on majority classes as well.

There is a rich literature on countermeasures against class imbalance for tra-
ditional classification models [4]. A popular and intuitive approach among them
is re-sampling, which directly adjusts the sample sizes of respective classes. For
example, SMOTE [3] generates synthetic samples, which are interpolations of
in-class neighboring samples, to augment the minority class. Its underlying as-
sumption is that the interpolations do not deviate from the original class distri-
bution, as in a locally linear feature space. Similar approaches for deep learning
models, e.g., re-sampling, cost-sensitive learning, and their combinations [14, 28],
have also been explored, but in a more limited number of studies. Overall, they
introduce complex architectures or sampling schemes, which require significant
amount of data- and model-specific configurations and lower the applicability
to new problems. It also should be noted that generating synthetic samples of
structured, complex data, in order to conduct synthetic over-sampling on such
data, is not straightforward.

In this work, we extend the synthetic over-sampling method to the convolu-
tional neural network (CNN) using its deep representation. To our knowledge,
over-sampling in the acquired, deep feature space have not been explored prior
to this work. Integrating synthetic instances, which are not direct mappings of
any raw input sample, effectively into a supervised learning framework is a non-
trivial challenge. Our main idea is to use synthetic instances as the supervising
targets in the deep feature space, to implement a representation learning which
induce better class distinction in the acquired space.

The proposed framework, Deep Over-sampling (DOS), employs a basic CNN
architecture in which the lower layers acquire the embedding function and the
top layers acquire the classification function. We implement the training of the
CNN with explicit supervising information for both functions, i.e., the network
parameters are updated by propagation from the output of the lower layers
as well as the top layers. Accordingly, the training data presents with each raw
input sample, a class label and a target in the deep feature space. The targets are
sampled from a linear subspace of the in-class neighbors around the embedded
input. As such targets naturally distribute closer to the class mean, our aim is
to induce smaller in-class variance among the embeddings.

DOS provides the framework to address the effect of class imbalance on both
classifier and representation learning. First, the training data is augmented by
assigning multiple synthetic targets to one input sample. Secondly, an iterative
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process of learning the CNN and updating the targets with the acquired repre-
sentation enhances the discriminative power of the deep features.

The main contribution of this work is a general re-sampling framework, which
enables the deep neural net to learn the deep representation and the classifier
jointly in a class-imbalanced setting without substantial modification on its ar-
chitecture, thus are applicable to a wide range of deep learning models. We val-
idate the effectiveness of the proposed framework in present an empirical study
using public image classification benchmarks. Furthermore, we investigate the
effect of the proposed framework outside the class imbalance setting. The rest
of this paper is organized as follows. Section 2 introduces the related work and
the preliminaries, respectively. Section 3 describes the details of the proposed
framework. The empirical results are shown in Section 4, and we present our
conclusion in Section 5.

2 Background

2.1 Class Imbalance

Class imbalance is a common issue in practical classification problems, where a
large imbalance in the number of training samples between classes causes the
learning algorithms to over-generalize for the classes in the majority. Its effect
is critical as retrieving the minority classes is usually the primary interest in
practice [11, 17]. The countermeasures against class imbalance can be generally
categorized into three major approaches. The re-sampling approach attempts
to directly adjust the sample sizes by over- or under-sampling on the training
set. The instance weighting approach exploits a similar intuition by increasing
the importance of the minority class samples. Finally, the cost-sensitive learning
approach modifies the loss function and/or the learning algorithm to penalize
the errors on the minority class predictions.

For traditional classification models, the synthetic over-sampling methods
such as SMOTE [3] have been generally successful in countering the effect of
imbalance. Typically, synthetic samples are generated by randomly selecting a
minority class sample and taking an interpolation between its neighbors. The re-
sampling approach has also been attempted on neural network models, e.g., [28]
has combined over-sampling with cost-sensitive learning and [15] has combined
under-sampling with synthetic over-sampling.

One limitation of the synthetic over-sampling method is the need for the
vector form input data, i.e., it is not applicable to non-vector input domain, e.g.,
pair-wise distances [16, 1]. Moreover, it implicitly assumes that the interpola-
tions do not deviate from the original distribution, as in the locally linear feature
space. Such assumption is usually not problematic for the traditional classifica-
tion models, many of which are developed with similar assumptions. Synthetic
over-sampling is generally successful when the features are pre-selected for such
models. Meanwhile, the assumption does not hold for complex, structured data
often handled by deep neural nets. Generating samples of complex data is sub-
stantially difficult, and simple interpolations can easily deviate from the original
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distribution. While acquiring locally-linear representation is a key advantage of
deep neural nets, a recent study has reported that class imbalance can affect
their representation learning capability as well [14].

In [14], a sophisticated under-sampling scheme called Large Margin Local
Embedding (LMLE) was implemented to generate an abridged training set for
representation learning. These samples were selected considering the class and
cluster structures such as in-/out-of-class and, in-/out-of-cluster neighbors. It
also introduced a new loss function based on class-separating margins, inspired
by the Large Margin Nearest Neighbor (LMNN) [26].

The potential demerit of under-sampling is the loss of information from dis-
carding the subset of the training data. As such, computationally-intensive anal-
ysis to retain important samples, in this case the analyses of class and cluster
structure, is inevitable in the re-sampling process. Another drawback in the
above work was the specificity of the loss function and the network architec-
ture. The effect of class imbalance, as we demonstrate in the next section, differ
based on the classification model. It is thus not clear whether the experimental
results of a modified kNN extends generally to other classifiers, especially given
that the proposed margin-based loss function is oriented toward the kNN-based
classification model. Additionally, its architecture does not support simultane-
ous learning of the representation and the classifier, which is a key feature of
CNN. Overall, the above implementation is likely to require much task- and
model-specific configurations when applying to a new problem.

In this paper, we explore an over-sampling scheme in the deep representation
space to avoid computationally intensive analyses. We also attempt to utilize
a basic CNN architecture in order to maintain its wide applicability and its
advantage of cohesive representation and classifier learning.

2.2 Preliminary Results

To motivate our study, we first present a preliminary result on the effect of class
imbalance on deep learning. An artificial imbalanced setting was created with the
MNIST-back-rotation images [20] by selecting four digits randomly, and remov-
ing 90 % of their samples. We trained two instances of a basic CNN architecture
[22] by back-propagation respectively with the original and the imbalanced data.

The training of the two CNNs from initial parameters were repeated ten
times and the averages of their class-wise retrieval performances, i.e., Precision,
Recall, and F1-score, are reported here. Although the overall accuracy has been
reported in prior studies, we preferred the class-wise retrieval measures in order
to obtain separate insights for the minority and majority classes.

Tables 1a and 1b show the class-wise precision, recall, and F1-score of one
trial from each experiment. In Table 1b, the minority class digits are indicated by
the asterisks. Additionally, significant declines (0.1 or more) in precision or recall,
compared to Table 1a, are indicated by double underline and smaller (0.05 or
more) drops are indicated by single underlines. Tables 2a and 2b show the same
performance measures by the kNN classifier using the deep representation ac-
quired by the two CNNs. The performance of the kNN, which is a non-inductive
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Table 1: Class-wise Performance Comparison (CNN)

(a) Balanced Data

Digit Precision Recall F1-score
0 0.88 0.92 0.90
1 0.93 0.87 0.90
2 0.63 0.68 0.65
3 0.80 0.81 0.80
4 0.64 0.83 0.72
5 0.71 0.69 0.70
6 0.77 0.67 0.72
7 0.75 0.72 0.74
8 0.78 0.73 0.75
9 0.71 0.70 0.70

(b) Imbalanced Data

Digit Precision Recall F1-score
0∗ 0.60 0.98 0.75
1 0.92 0.78 0.85
2 0.69 0.42 0.52
3 0.81 0.58 0.68
4∗ 0.090 0.92 0.16
5∗ 0.12 0.90 0.22
6∗ 0.075 0.84 0.14
7 0.77 0.53 0.63
8 0.70 0.62 0.65
9 0.80 0.38 0.51

Table 2: Class-wise Performance Comparison (Deep Representation + kNN)

(a) Balanced Data

Digit Precision Recall F1-score
0 0.91 0.86 0.89
1 0.93 0.82 0.87
2 0.60 0.74 0.66
3 0.81 0.74 0.77
4 0.72 0.72 0.72
5 0.64 0.73 0.68
6 0.67 0.78 0.72
7 0.74 0.71 0.72
8 0.74 0.75 0.74
9 0.70 0.64 0.67

(b) Imbalanced Data

Digit Precision Recall F1-score
0∗ 0.86 0.83 0.85
1 0.91 0.83 0.87
2 0.57 0.62 0.59
3 0.75 0.74 0.74
4∗ 0.61 0.61 0.61
5∗ 0.51 0.57 0.54
6∗ 0.48 0.56 0.52
7 0.69 0.67 0.68
8 0.71 0.67 0.69
9 0.63 0.59 0.61

lazy learning algorithm, is said to substantially reflect the effect of class im-
balance on representation learning [14]. The minority classes and reductions in
precision or recall are indicated in the same manner as in Table 2a.

In Table 1b, there is a clear trend of decrease in precision for the minority
classes. Over the majority classes, there are reduction in recall which are smaller
but still substantial. In Table 2b, both the precision and the recall decline for
most of the minority classes. There are declines in precision or recall of many
majority classes as well.

Table 3 shows the average measures of minority and majority classes over
ten trials. The digits of the minority classes were chosen randomly in each trial.
The trends in Table 3 regarding the precision and the recall are consistent with
those of Tables 1 and 2. These preliminary results support our insight that the
class imbalance has a negative impact on the representation learning of CNN as
well as its classifier training, and the influence differs depending on the classifier.

3 Deep Over-sampling Framework

This section describes the details of the proposed framework, Deep Over-sampling
(DOS). The main idea of DOS is to re-sample the training data in an expressive,
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Table 3: Summary of Average Retrieval Measures

(a) CNN

Setting Precision Recall F1-score

Balanced 0.76 0.76 0.76
Minority 0.32 0.86 0.43
Majority 0.79 0.57 0.66

(b) Deep Representation + kNN

Setting Precision Recall F1-score

Balanced 0.75 0.75 0.75
Minority 0.65 0.67 0.65
Majority 0.71 0.70 0.71

nonlinear feature space acquired by the convolutional neural network. While
previous over-sampling based methods such as SMOTE have achieved general
success for traditional models, their approach of sampling from the linear sub-
space of the original data has clear limitations for complex, structured data, such
as imagery. In contrast, DOS implements re-sampling in the linear subspace of
deep feature instances and exploit the re-sampled instances for explicitly super-
vised representation learning as well as complementing the minority classes.

3.1 Notations

We employ a basic CNN whose architecture can be divided into two groups of
layers: the lower layers embedding the raw input into the deep feature space, and
the top layers predicting the class label from the deep features. We denote the
embedding function of the CNN by f : Φ→ Rd, where Φ is the raw input domain
with a complex data structure. We also denote the discriminative function of the
CNN by g : Rd → [0 : 1]n, whose output represents a vector of posterior class
probabilities P (C|x) over n classes.

Let X = {(xi, yi)}mi=1 denote a set of training data, where xi ∈ Φ and
yi takes a class value from C = {cj}nj=1. The network parameters, denoted
by Wf and Wg for the embedding layers and the classification layers, re-
spectively, are learned with back-propagation. A class imbalance, such that
#{(x, y) : y = ci} � #{(x, y) : y = cj} for some {ci, cj} ⊂ C, may arise
from practical issues such as the cost of data collection. A significant imbalance
can hinder the performance of the acquired model. The architecture is illustrated
in Fig.1. We further elaborate on its details in Section 3.3.

3.2 Deep Feature Overloading

We employ re-sampling in the deep feature space to assign each raw input sample
with multiple deep feature instances. As a result, the supervising targets are
provided for both the embedding function f and the classification function g.

Let V(cj) = {f(xi) : yi = cj} denote the set of embeddings whose raw input
has the label cj . A training instance is defined as a triplet zi = (xi, yi,N (xi)),
consisting of an input sample xi, its class label yi, and a subset of embeddings
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N (xi). N (xi) is a subset of V(yi) that includes f(xi) and its k in-class neighbors,

N (xi; k) = arg min
N⊂V(yi)∧
#(N )=k+1

∑
v∈N
‖f(xi)− v‖2 (1)

We refer to the process of pairing each (xi, yi) ∈ X with its deep feature
neighbors as deep feature overloading. The process is illustrated in Fig.2. We
refer to k as the overloading parameter and Z = {zi}mi=1 as the overloaded
training set.

As we describe in the following section, the deep feature neighbors are used
to generate synthetic targets for the minority class samples. The value of k, thus
may be varied between the minority and the majority classes as the latter does
not need to be synthetically complemented. Note that the minimum value for k
is 0, in which case N (xi) = {f(xi)}.

3.3 Micro-cluster Loss Function

Our CNN architecture, illustrated in Fig.1, features two outputs, one for the
classification and one for the embedding functions. The initial parameters of the
network are learned in a single-task training using only the substructure indi-
cated by the dotted box on the left side of the figure with the original imblanced
training set.

The classifier output is given by the softmax layer and the cross-entropy loss
[9] H based on the predicted class probabilities g(f(x)) of a given input (x, y)

`(x, y) = H (g(f(x)), y) (2)

is used for single-task learning.
After the initialization, the training is expanded to the multi-task learning

architecture in Fig.1 to use propagation from both f and g. The loss function
given an overloaded sample zi is defined with regards to N (xi), which can be
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considered an in-class cluster in the deep feature space. We thus refer to the
functions as the micro-cluster loss.

The micro-cluster loss for the embedding function f is defined as a sum of
squared errors

`f (x) =
∑

v∈N (x)

‖f(x)− v‖2 (3)

The minimum of (3) is obtained when f(x) is mapped to the mean of N (xi).
Note that the mean is a synthetic point in the deep feature space, to which no
particular original sample is projected.

There are two key intuitions for setting the target representation to local
means. First, the summation of the squared errors can add emphases to the
minority class samples, by overloading them with a larger number of embeddings.
Secondly, as the local means distribute closer toward the mean of the original
distribution, it induces smaller in-class variance in the learned representation.
Smaller in-class variance yields better class distinction, which can be induced
further by iterating the procedure with the updated embeddings.

The micro-cluster loss for g is defined as the weighted sum of the cross-entropy
losses, i.e.,

`g(x, y) =
∑

v∈N (x)

ρ(v)H(g(v), y) (4)

where ρ(v) is the normalized exponential weight given the squared errors in (3),

ρ(v) =
1

Z
exp

(
−‖f(x)− v‖2

)
(5)

and Z denotes a normalizer such that

Z =
∑
N (x)

exp
(
−‖f(x)− v‖2

)
In (5), the largest weight among N (x), 1, is assigned to the original loss from
f(x), and a larger weight is assigned to neighbors in a closer range.

3.4 Deep Over-sampling

Deep Over-sampling uses the overloaded instances to supplement the minority
classes. Multiple overloaded instances are generated from each training sample
by pairing it with different targets sampled from the linear subspace of its in-class
neighbors.

Let W denote a domain of positive, `1-normalized vectors of k-dimensions,
i.e., for all w ∈ W, ‖w‖1 = 1 and wi ≥ 0 for i = 1, . . . , k. Note that k is the
overloading parameter. For each overloaded instance zi ∈ Z, we sample a set of
vectors {w(i,j)}rj=1 from W.

We define the weighted overloading instance as a quadruplet

z
(j)
i = (xi, yi,N (xi),w

(i,j)) (6)
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Note that each element of the weight vector correspond with an element ofN (xi).
Sampling r vectors for each zi, we obtain a weighted training set

Z ′ =
r
∪

j=1

{
z
(j)
i

}m

i=1
(7)

We define the following micro-cluster loss functions for the weighted in-
stances. The loss function for f given a quadruplet of x, y, N (x) = {vi}ki=1),
and w = (w1, . . . , wk) is written as

`′f (x, y,w,N (x)) =

k∑
i=1

wi ‖f(x)− vi‖2 (8)

The minimum of (8) is attained when f(x) is at the weighted mean,
∑

i wivi.
The weighted micro-cluster loss for g is defined, similarly to (4), as

`′g(x, y,w) =

k∑
i=1

ρ′(vi, wi)H(g(vi), y) (9)

where ρ′ is the normalized weight

ρ′(vi, wi) =
1

Z
exp(−wi‖f(x)− vi‖2) (10)

To summarize, the augmentative samples for the minority classes are gener-
ated by pairing each raw input sample with multiple targets for representation
learning. The rationale for learning to map one input onto multiple targets can
be explained as promoting robustness under the imbalanced setting. Since there
are less than sufficient number of samples for the minority classes, strong su-
pervised learning may induce the risk of overfitting. Generating multiple targets
within the range of local neighbors is similar in effect as adding noise to the tar-
get and can prevent the convergence of the gradient descent to undesired local
solutions.

After training the CNN, the targets are recomputed with the updated rep-
resentation. The iterative process of training the CNN and updating the targets
incrementally shifts the targets toward the class mean and improve the class dis-
tinction among the the embeddings. The pseudo code of the iterative procedure
is shown in Algorithm 1.

3.5 Parameter Selection

As mentioned in Section 3.2, different values of overloading parameter k may be
selected for the minority and the majority classes to placing additional emphases
on the former. Let kmnr and kmjr denote the overloading values for the minority
and the majority classes, respectively. If the latter is set to the minimum, i.e.,
kmjr = 0, then the loss for the minority class samples, as given by (3), accounts
for (kmnr + 1) times more squared errors.
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Algorithm 1 CNN Training with Deep Over-sampling

1: Input X = {(xi, yi)}mi=1, class values C = {cj}nj=1, class-wise overloading {kj}nj=1,
class-wise over-sampling size {rj}nj=1, CNN with outputs for functions f and g,
deep feature dimensions d, number of iterations T

2: Output A trained CNN with functions f and g
3: function STL(T ): Single-task training of CNN with training set T
4: function MTL(T ): Multi-task training of CNN with training set T
5: Initialize CNN parameters: STL(X )
6: for t = 1, . . . , T do
7: for i = 1, . . . ,m do
8: Compute vi = f(xi)
9: end for

10: for j = 1, . . . , n do
11: if kj > 0 then
12: Compute the mutual distance matrix D(cj) over V(cj) for neighbor search
13: end if
14: Zj = ∅
15: for {(xi, yi) : yi = cj} do
16: Select N (xi) from V(cj)
17: Sample a set of rj normalized positive vectors W
18: Zj = Zj ∪ {(xi, yi,N (xi),w)}w∈W
19: end for
20: end for
21: Z =

n
∪

j=1
Zc

22: Update CNN parameters: MTL(Z)
23: end for

In essence, however, k should be chosen to reflect the extent of the neigh-
borhood, as the size of the neighbors, N (x), can influence the the efficiency of
the back-propagation learning. As one increase k, the target shifts closer to the
global class mean and, in turn, farther away from the tentative embedding f(x).
For better convergence of the gradient descent, the target should be maintained
within a moderate range of proximity from the tentative embedding.

Our general guideline for the parameter selection is therefore to choose a
value of kmnr from [3:10] by empirical validation and set kmjr = 0 provided that
there are sufficient number of samples for the majority classes. Furthermore, we
suggest to choose the over-sampling rate r from [ 1R : kmnr

R ] where R denotes the
average ratio of the minority and the majority class samples, i.e.,

R =
#{(x, y) : (x, y) ∈ X∧y = cmnr}
#{(x, y) : (x, y) ∈ X∧y = cmjr}

(11)

For the number of iterations T , we suggest it to be the same as the number
of training rounds, i.e., to re-compute the targets after every training round.
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4 Empirical Results

We conducted an empirical study3 to evaluate the DOS framework in three
experimental settings. The first experiment is a baseline comparison, for which
we replicated a setting used in the most recently proposed model to address the
class imbalance. Secondly, we evaluated the sensitivity of DOS with different
levels of imbalance and parameter choices. Finally, we investigated the effect of
deep over-sampling in the standard, balanced settings. The imbalanced settings
were created with standard benchmarks by deleting the samples from selected
classes.

4.1 Datasets and CNN Settings

We present the results on five public datasets: MNIST [21], MNIST-back-rotation
images [20], SVHN [23], CIFAR-10 [18], and STL-10 [6]. We have set up the ex-
periment in the image domain, because it is one of the most popular domains
in which CNNs have been used extensively, and also it is difficult to apply the
SMOTE algorithm directly. Note that we omit the result of preprocessing the
imbalanced image set using SMOTE, as it achieved no improvement in the clas-
sifier performances.

The MNIST digit dataset consists of a training set of 60000 images and a
test set of 10000 images, which includes 6000 and 1000 images for each digit,
respectively. The MNIST-back-rotation-image (MNISTrb) is an extension of the
MNIST dataset contains 28×28 images of rotated digits over randomly inserted
backgrounds. The default training and test set consist of 12000 and 50000 images,
respectively. The Street View House Numbers (SVHN) dataset consists of 73,257
digits for training and 26,032 digits for testing in 32 × 32 RGB images. The
CIFAR-10 dataset consists of 32 × 32 RGB images. A total of 60,000 images
in 10 categories are split into 50,000 training and 10,000 testing images. The
STL-10 dataset contains 96 × 96 RGB images in 10 categories. All results are
reported on the default test sets.

For MNIST, MNISTrb, and SVHN, we employ a CNN architecture consist-
ing of two convolution layers with 6 and 16 filters, respectively, and two fully-
connected layers with 400 and 120 hidden units. ReLU is adopted between the
convolutional layers and the fully connected layers. For CIFAR-10 and STL-10,
we use convolutional layers with 20 and 50 filters and fully-connected layers with
500 and 120 hidden units. The summary of the datasets and the architectures
are shown in Table 4.

4.2 Experimental Settings and Evaluation Metrics

Our first experiment follows that of [14] using the MNIST-back-rot images. First,
the original dataset was augmented 10 times with mirrored and rotated images.

3 The source codes for reproducing the datasets and the results are made available at
http://www.rs.tus.ac.jp/ando/exp/DOS.html
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Table 4: Datasets and CNN Architectures

Dataset #C #TRN #TST Image Dim CNN Layers
Batch Size/

Trn.Rnds

MNIST [21] 10 50,000 10,000 1× 28× 28 C6-C16-F400-F120 60/3
MNISTrb [20] 10 12,000 50,000 1× 28× 28 C6-C16-F400-F120 40/5

SVHN [23] 10 73,257 26,032 3× 32× 32 C6-C16-F400-F120 60/3
CIFAR-10 [18] 10 50,000 10,000 3× 32× 32 C20-C50-F500-F120 50/4

STL-10 [6] 10 5,000 8,000 3× 96× 96 C20-C50-F500-F120 50/5

Then, class imbalance was created by deleting samples selected with Gaussian
distribution until a designated overall reduction rate is reached. We compare
the average per-class accuracy (average class-wise recall) with those of Triplet
re-sampling with cost-sensitive learning and Large Margin Local Embedding
(LMLE) reported in [14]. Triplet loss re-sampling with cost-sensitive learning is
a hybrid method that implements the triplet loss function used in [5, 24, 25] with
re-sampling and cost-sensitive learning.

The second experiment analyzes the sensitivity of DOS over the levels of
imbalance and the choices of k, using MNIST, MNIST-back-rotation, and SVHN
datasets. The value of k is altered over 3, 5, and 10. In [3], 5 was given as the
default value of k and other values have been tested in ensuing studies. The
imbalance is created by randomly selecting four classes and removing p portion
of their samples. We report the class-wise retrieval measures: precision, recall,
F1-score, and the Area Under the Precision-Recall Curve (AUPRC), for the
minority and the majority classes, respectively. The precision-recall curve is used
in similar scope as the receiver operating characteristic curve (ROC). [10] has
suggested the use of AUPRC over AUROC, which provides an overly optimistic
estimate of the retrieval performance in some cases. Note that the precision,
recall, and F1-score are computed from a multi-class confusion matrix, while the
precision-recall curve is computed from the class-wise posterior probabilities.

The third experiment is conducted using the original SVHN, CIFAR-10, and
STL-10 datasets. Since the classes are not imbalanced, the overloading value k is
set uniformly for all classes, and the over-sampling rate r, from (11), is set to 1.
The result of this experiment thus reflect the effect of deep feature overloading
in a well-balanced setting. The evaluation metrics are the same as the second
experiment, but averaged over all classes.

4.3 Results

Comparison with Existing work The result from the first experiment is
summarized in Table 5. The overall reduction rate is shown on the first column.
The performances of the baseline methods (TL-RS-CSL, LMLE) are shown in
the second and the third columns. In the last three columns, the performances of
DOS and two classifiers: logistic regression (LR) and k-nearest neighbors (kNN)
using its deep representation are shown. While all methods show declining trends
of accuracy, DOS showed the slowest decline against the reduction rate.



13

Table 5: Baseline Comparison (Class-wise Recall)

Reduction Rate TL-RS-CSL LMLE DOS DOS-LR DOS-kNN

0 76.12 77.64 77.35 77.62 76.00
20 67.18 75.58 77.13 74.60 73.53
40 56.49 70.13 75.43 73.53 72.98

Sensitivity Analysis on Imbalanced Data Tables 6 and 7 summarize the
results of the second experiment. In Table 6, we compare the performances of
the basic CNN, traditional classifiers using the deep representation of the ba-
sic CNN (CNN-CL), and DOS, over the reduction rates p = 0.90, 0.95, 0.99. On
each row, four evaluation measures on MNIST, MNISTbr, and SVHN are shown.
Note that the AUPRC of CNN-CL is computed from the predicted class prob-
abilities of the logistic regression classifier and other performances are those of
the kNN classifier. The performances of the minority (mnr) and the majority
(mjr) classes are indicated on the third column, respectively. We indicate the
significant increases (0.1 or more) over CNN and CNN-CL by DOS with double
underlines and smaller increases (0.05 or more) with single underlines. In Table
6, DOS exhibit more significant advantage with increasing level of imbalance,
over the basic CNN and the classifiers using its deep representation.

Table 7 summarizes the sensitivity analysis on the overloading parameter
values k = 3, 5, 10 with reduction rate set to p = 0.01. Each row shows the
four evaluation measures on SVHN, CIFAR-10, and STL-10, respectively. For
reference, The performances of the basic CNN and the deep feature classifiers
are shown on the top rows. We indicate the significant increases over the baselines
in the similar manner as Table 6. The minority and majority classes are indicated
on the third column as well. Additionally, we indicate the unique largest values
among DOS settings by bold letters. These results show that DOS is generally
not sensitive to the choice of k. However, there is a marginal trend that the
performances on the minority classes are slightly higher with k = 3, 5 and those
of the majority classes are slightly higher with k = 10. It suggests possible decline
in performance with overly large k.

Run-time analysis The deep learning in the above experiment was conducted
on NVIDIA GTX 980 graphics card with 704 cores and 6GB of global memory.
The average increases in run-time for DOS compared to the basic, single-task
learning architecture CNN were 11%, 12%, and 32% for MNIST, MNIST-bak-
rot, and SVHN datasets, respectively.

Evaluation on Balanced Data Table 8 summarizes the performances on the
balanced settings. On the top rows, the performances of the basic CNN and the
classifiers using its representations are shown for reference. On the bottom rows,
the performances of DOS at k = 3, 5, 10 are shown. The uniquely best values
among the three settings are indicated by bold fonts. While the improvements
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Table 6: Performance Comparison on Imbalanced Data over Reduction Rate

model p class
MNIST MNISTbr SVHN

Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC

CNN

0.90
mnr 0.98 0.93 0.96 0.99 0.31 0.76 0.43 0.68 0.62 0.77 0.55 0.78
mjr 0.96 0.99 0.97 1.0 0.77 0.56 0.65 0.77 0.80 0.76 0.75 0.89

0.95
mnr 0.99 0.89 0.94 0.99 0.27 0.76 0.23 0.57 0.13 0.86 0.21 0.61
mjr 0.93 0.98 0.95 0.99 0.52 0.69 0.58 0.67 0.89 0.61 0.71 0.87

0.99
mnr 0.65 0.98 0.77 0.96 0.31 0.71 0.43 0.68 0.50 0.72 0.42 0.74
mjr 0.99 0.82 0.89 0.99 0.78 0.56 0.65 0.77 0.73 0.67 0.60 0.81

CNN-CL

0.90
mnr 0.99 0.90 0.94 1.0 0.22 0.77 0.31 0.69 0.59 0.60 0.42 0.78
mjr 0.94 0.99 0.96 0.98 0.78 0.53 0.63 0.78 0.77 0.75 0.73 0.86

0.95
mnr 0.99 0.83 0.90 0.97 0.28 0.77 0.24 0.60 0.039 0.68 0.069 0.61
mjr 0.89 0.99 0.94 1.0 0.52 0.68 0.57 0.69 0.89 0.60 0.70 0.84

0.99
mnr 0.75 0.98 0.85 0.95 0.22 0.72 0.31 0.69 0.47 0.71 0.37 0.72
mjr 0.99 0.86 0.92 0.99 0.78 0.53 0.63 0.78 0.71 0.57 0.56 0.78

DOS
(k = 5)

0.90
mnr 0.99 0.97 0.98 1.0 0.66 0.77 0.71 0.79 0.71 0.82 0.72 0.84
mjr 0.98 0.99 0.98 1.0 0.75 0.68 0.71 0.81 0.85 0.79 0.81 0.92

0.95
mnr 0.98 0.96 0.97 1.0 0.56 0.75 0.63 0.72 0.40 0.89 0.55 0.73
mjr 0.97 0.99 0.98 1.0 0.64 0.74 0.69 0.78 0.90 0.69 0.78 0.91

0.99
mnr 0.91 0.99 0.95 0.99 0.61 0.73 0.66 0.75 0.51 0.91 0.64 0.80
mjr 0.98 0.94 0.96 1.0 0.77 0.70 0.73 0.82 0.89 0.68 0.77 0.90

Table 7: Performance Comparison on Imbalanced Data over k

Classifier k
MNIST MNIST-back-rot SVHN

Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC

CNN
mnr 0.65 0.98 0.77 0.96 0.31 0.76 0.43 0.68 0.50 0.72 0.42 0.74
mjr 0.99 0.82 0.89 0.99 0.78 0.56 0.65 0.77 0.73 0.67 0.60 0.81

CNN-CL
mnr 0.75 0.98 0.85 0.95 0.22 0.77 0.31 0.69 0.47 0.71 0.37 0.72
mjr 0.99 0.86 0.92 0.99 0.78 0.53 0.63 0.78 0.71 0.57 0.56 0.78

DOS

3
mnr 0.91 0.98 0.95 0.99 0.65 0.77 0.70 0.78 0.67 0.77 0.66 0.83
mjr 0.99 0.94 0.96 1.0 0.75 0.68 0.71 0.80 0.80 0.74 0.74 0.86

5
mnr 0.91 0.99 0.95 0.99 0.66 0.77 0.71 0.79 0.51 0.91 0.64 0.80
mjr 0.98 0.94 0.96 1.0 0.75 0.68 0.71 0.81 0.89 0.68 0.77 0.90

10
mnr 0.91 0.99 0.95 0.99 0.61 0.73 0.66 0.75 0.40 0.89 0.55 0.73
mjr 0.99 0.94 0.96 1.0 0.77 0.70 0.73 0.82 0.90 0.69 0.78 0.91

Table 8: Performance Comparison on Balanced Data over k

Classifier k
SVHN CIFAR-10 STL-10

F1 AUC F1 AUC F1 AUC

CNN 0.85 0.92 0.62 0.68 0.38 0.38
CNN-CL 0.85 0.87 0.61 0.68 0.39 0.40

DOS
3 0.87 0.94 0.64 0.70 0.42 0.41
5 0.88 0.95 0.64 0.71 0.42 0.42
10 0.88 0.94 0.64 0.70 0.42 0.42
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from the basic CNN were smaller (between 0.01 and 0.03) than in previous ex-
periments, DOS showed consistent improvements across all datasets. This result
supports our view that deep feature overloading can improve the discriminative
power of the deep representation. We note that the performance of DOS were
not sensitive to the values chosen for k.

5 Conclusion

We proposed the Deep Over-sampling framework for imbalanced classification
problem of complex, structured data that allows the CNN to learn the deep
representation and the classifier jointly without substantial modification to its
architecture. The framework extends the synthetic over-sampling technique by
using the synthetic instances not only to complement the minority classes for
classifier learning, but also to supervise representation learning and enhance its
robustness and class distinction. The empirical results showed that the proposed
framework can address the class imbalance more effectively than the existing
countermeasures for deep learning, and the improvements were more significant
under stronger levels of imbalance. Furthermore, its merit on representation
learning were verified from the improved performances in the balanced setting.
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