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Abstract. We review our recent progress in the development of graph
kernels. We discuss the hash graph kernel framework, which makes the
computation of kernels for graphs with vertices and edges annotated with
real-valued information feasible for large data sets. Moreover, we summarize
our general investigation of the benefits of explicit graph feature maps in
comparison to using the kernel trick. Our experimental studies on real-
world data sets suggest that explicit feature maps often provide sufficient
classification accuracy while being computed more efficiently. Finally, we
describe how to construct valid kernels from optimal assignments to obtain
new expressive graph kernels. These make use of the kernel trick to establish
one-to-one correspondences. We conclude by a discussion of our results and
their implication for the future development of graph kernels.

1 Introduction

In various domains such as chemo- and bioinformatics, or social network analysis large
amounts of graph structured data is becoming increasingly prevalent. Classification
of these graphs remains a challenge as most graph kernels either do not scale
to large data sets or are not applicable to all types of graphs. In the following
we briefly summarize related work before discussing our recent progress in the
development of efficient and expressive graphs kernels.

1.1 Related Work

In recent years, various graph kernels have been proposed. Gärtner et al. [5]
and Kashima et al. [8] simultaneously developed graph kernels based on random
walks, which count the number of walks two graphs have in common. Since then,
random walk kernels have been studied intensively, see, e.g., [13,21,7,10,19]. Kernels
based on shortest paths were introduced by Borgwardt et al. [1] and are computed
by performing 1-step walks on the transformed input graphs, where edges are
annotated with shortest-path lengths. A drawback of the approaches mentioned
above is their high computational cost. Therefore, a different line of research focuses
particularly on scalable graph kernels. These kernels are typically computed by
explicit feature maps, see, e.g., [18,17]. This allows to bypass the computation of a
gram matrix of quadratic size by applying fast linear classifiers [2]. Moreover, graph
kernels using assignments have been proposed [4], and were recently applied to
geometric embeddings of graphs [6].



2 Recent Progress in the Design of Graph Kernels

We give an overview of our recent progress in the development of scalable and
expressive graph kernels.

2.1 Hash Graph Kernels

In areas such as chemo- or bioinformatics edges and vertices of graphs are often
annotated with real-valued information, e.g., physical measurements. It has been
shown that these attributes can boost classification accuracies [1,9,3]. Previous
graph kernels that can take these attributes into account are relatively slow and
employ the kernel trick [1,9,3,15]. Therefore, these approaches do not scale to large
graphs and data sets. In order to overcome this, we introduced the hash graph
kernel framework in [14]. The idea is to iteratively turn the continuous attributes of
a graph into discrete labels using randomized hash functions. This allows to apply
fast explicit graph feature maps, e.g., [17], which are limited to discrete annotations.
In each iteration we sample new hash functions and compute the feature map.
Finally, the feature maps of all iterations are combined into one feature map. In
order to obtain a meaningful similarity between attributes in Rd, we require that
the probability of collision Pr[h1(x) = h2(y)] of two independently chosen random
hash functions h1, h2 : Rd → N equals an adequate kernel on Rd. Equipped with
such a hash function, we derived approximation results for several state-of-the-art
kernels which can handle continuous information. Moreover, we derived a variant of
the Weisfeiler-Lehman subtree kernel which can handle continuous attributes.

Our extensive experimental study showed that instances of the hash graph kernel
framework achieve state-of-the-art classification accuracies while being orders of
magnitudes faster than kernels that were specifically designed to handle continuous
information.

2.2 Explicit Graph Feature Maps

Explicit feature maps of kernels for continuous vectorial data are known for many
popular kernels like the Gaussian kernel [16] and are heavily applied in practice.
These techniques cannot be used to obtain approximation guarantees in the hash
graph kernel framework. Therefore, in a different line of work, we developed explicit
feature maps with the goal to lift the known approximation results for kernels on
continuous data to kernels for graphs annotated with continuous data [11]. More
specifically, we investigated how general convolution kernels are composed from
base kernels and how to construct corresponding feature maps. We applied our
results to widely used graph kernels and analyzed for which kernels and graph
properties computation by explicit feature maps is feasible and actually more
efficient. We derived approximative, explicit feature maps for state-of-the-art kernels
supporting real-valued attributes. Empirically we observed that for graph kernels
like GraphHopper [3] and Graph Invariant [15] approximative explicit feature maps
achieve a classification accuracy close to the exact methods based on the kernel
trick, but required only a fraction of their running time. For the shortest-path



kernel [1] on the other hand the approach fails in accordance to our theoretical
analysis.

Moreover, we investigated the benefits of employing the kernel trick when
the number of features used by a kernel is very large [10,11]. We derived feature
maps for random walk and subgraph kernels, and applied them to real-world
graphs with discrete labels. Experimentally we observed a phase transition when
comparing running time with respect to label diversity, walk lengths and subgraph
size, respectively, confirming our theoretical analysis.

2.3 Optimal Assignment Kernels
For non-vectorial data, Fröhlich et al. [4] proposed kernels for graphs derived from
an optimal assignment between their vertices, where vertex attributes are compared
by a base kernel. However, it was shown that the resulting similarity measure is not
necessarily a valid kernel [20,21]. Hence, in [12], we studied optimal assignment
kernels in more detail and investigated which base kernels lead to valid kernels. We
characterized a specific class of kernels and showed that it is equivalent to the
kernels obtained from a hierarchical partition of their domain. When such kernels
are used as base kernel the optimal assignment (i) yields a valid kernel; and (ii)
can be computed in linear time by histogram intersection given the hierarchy. We
demonstrated the versatility of our results by deriving novel graph kernels based on
optimal assignments, which are shown to improve over their convolution-based
counterparts. In particular, we proposed the Weisfeiler-Lehman optimal assignment
kernel, which performs favorable compared to state-of-the-art graph kernels on a
wide range of data sets.

3 Conclusion

We gave an overview about our recent progress in kernel-based graph classification.
Our results show that explicit graph feature maps can provide an efficient com-
putational alternative for many known graph kernels and practical applications.
This is the case for kernels supporting graphs with continuous attributes and for
those limited to discrete labels, even when the number of features is very large.
Assignment kernels, on the other hand, are computed by histogram intersection and
thereby again employ the kernel trick. This suggests to study the application of
non-linear kernels to explicit graph feature maps in more detail as future work.
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