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Abstract. Extracting features from incomplete tensors is a challenging task which
is not well explored. Due to the data with missing entries, existing feature ex-
traction methods are not applicable. Although tensor completion techniques can
estimate the missing entries well, they focus on data recovery and do not con-
sider the relationships among tensor samples for effective feature extraction. To
solve this problem of feature extraction for incomplete data, we propose an un-
supervised method, TDVM, which incorporates low-rank Tucker Decomposition
with feature Variance Maximization in a unified framework. Based on Tucker
decomposition, we impose nuclear norm regularization on the core tensors while
minimizing reconstruction errors, and meanwhile maximize the variance of core
tensors (i.e., extracted features). Here, the relationships among tensor samples
are explored via variance maximization while estimating the missing entries.
We thus can simultaneously obtain lower-dimensional core tensors and informa-
tive features directly from observed entries. The alternating direction method of
multipliers approach is utilized to solve the optimization objective. We evaluate
the features extracted from two real data with different missing entries for face
recognition tasks. Experimental results illustrate the superior performance of our
method with a significant improvement over the state-of-the-art methods.

Keywords: Missing Data, Feature Extraction, Low-rank Tucker Decomposition,
Variance Maximization

1 Introduction

This paper aims to extract features directly from data with missing entries. Many real-
world data are multi-dimensional, in the form of tensors, which are ubiquitous such
as multichannel images and have become increasingly popular [?]. Tucker decomposi-
tion is widely used to solve tensor learning problems, which decomposes a tensor into
a core tensor with factor matrices [?]. Based on Tucker decomposition, many tensor
methods are proposed for feature extraction (dimension reduction) [?2,2,2,?,?]. For ex-
ample, multilinear principal component analysis (MPCA) [?] extracts features directly
from tensors, which is a popular extension of classical Principal Component Analysis

** Yiu-ming Cheung is the corresponding author.
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(PCA) [?]. Furthermore, some robust methods such as robust tensor PCA (TRPCA) [?]
are well studied for data with corruptions (e.g., noise and outliers) [?,2,?].

In practice, some entries of tensors are often missing due to the problems in the
acquisition process or costly experiments etc. [?]. This missing data problem appears in
a wide range of fields such as social sciences, computer vision and medical systems [?].
For example, partial responses in surveys are common in the social sciences, leading to
incomplete datasets with arbitrary patterns [?]. Moreover, some images are corrupted
during the image acquisition and partial entries are missing [?]. In these scenarios, the
above existing feature learning methods cannot work well. How to correctly handle
missing data is a fundamental yet challenging problem in machine learning [?], and the
problem of extracting features from incomplete tensors is not well explored.

One natural solution to solving this problem is to recover the missing data and
then view the recovered tensors as the extracted features. Tensor completion techniques
are widely used for missing data problems and has drawn much attention in many ap-
plications such as image recovery [?] and video completion [?]. For example, a high
accuracy low-rank tensor completion algorithm (HaLRTC) [?] is proposed to estimate
missing values in tensors of visual data, and a generalized higher-order orthogonal itera-
tion (gHOI) [?] achieves simultaneous low-rank Tucker decomposition and completion
efficiently. Although these tensor completion methods can recover the missing entries
well under certain conditions, they only focus on data recovery without exploring the
relationships among samples for effective feature extraction. Besides, taking recovered
data as features, the dimension of features cannot be reduced.

Another straightforward solution is a “two-step” strategy, i.e., “tensor completion
methods + feature extraction methods”: the missing entries are first recovered by the
former and then the features are extracted from the completed data by the latter. For
example, LRANTD [?] performs nonnegative Tucker decomposition (NTD) for incom-
plete tensors by realizing “low-rank representation (LRA) + nonnegative feature ex-
traction”. It needs a tensor completion method to estimate the missing values in the
preceding LRA step. However, this “two-step” strategy probably amplifies the recon-
struction errors as the missing entries and features are not learned in one stage, and
the errors from tensor completion methods can deteriorate the performance of feature
extraction in the succeeding step. Moreover, this approach is generally not computa-
tionally efficient.

Recently, a few works apply tensor completion methods to feature classification by
incorporating completion model with discriminant analysis [?,?]. These methods are
supervised and require labels which are expensive and difficult to obtain. To the best
of our knowledge, there is no an unsupervised method to extract features directly from
tensors with missing entries.

To solve the problem of extracting features from incomplete tensors, we propose an
unsupervised method, i.e., incorporating Low-rank Tucker Decomposition with feature
Variance Maximization in a unified framework, namely TDVM. In this framework,
based on Tucker decomposition with orthonormal factor matrices (a.k.a., higher-order
singular value decomposition (HOSVD) [?]), we impose nuclear norm regularization on
the core tensors while minimizing the reconstruction error, and meanwhile maximize
the variance of core tensors. In this paper, the learned core tensors (analogous to the
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singular values of a matrix) are viewed as the extracted features. Compared with tensor
completion methods and “two-step” strategies:

— Although Tucker decomposition-based tensor completion methods can also ob-
tain core tensors, these core tensors are learned with aiming to recover the ten-
sor samples and without exploring the relationships among samples for effective
feature extraction. Unlike these tensor completion methods, here we focus on low-
dimensional feature extraction rather than missing data recovery. Besides, we in-
corporate a specific term (feature variance maximization) to enhance the discrimi-
native properties of learned core tensors.

— Different from the “two-step” strategies, we simultaneously learn the missing en-
tries and features directly from observed entries in the unified framework. Besides,
TDVM directly learns low-dimensional features in one step, which saves computa-
tional cost.

We optimize our model using alternating direction method of multipliers (ADMM)
[?]. After feature extraction, we evaluate the extracted features for face recognition,
which empirically demonstrates that TDVM outperforms the competing methods con-
sistently. In a nutshell, the contributions of this paper are twofold:

— We propose an efficient unsupervised feature extraction method, TDVM, based on
low-rank Tucker decomposition. TDVM can simultaneously obtain low-dimensional
core tensors and features for incomplete data.

— We incorporate nuclear norm regularization with variance maximization on core
tensors (features) to explore the relationships among tensor samples while estimat-
ing missing entries, leading to informative features extracted directly from observed
entries.

2 Preliminaries and Backgrounds

2.1 Notations and Operations

The number of dimensions of a tensor is the order and each dimension is a mode of it.
A vector (i.e. first-order tensor) is denoted by a bold lower-case letter x € R’. A matrix
(i.e. second-order tensor) is denoted by a bold capital letter X € R’ *!2_ A higher-order
(N > 3) tensor is denoted by a calligraphic letter X € R71>"*I~_The ith entry of a
vector a € R’ is denoted by a;, and the (i, j)th entry of a matrix X € R1*2 is denoted
by X, ;. The (i1,--- ,in)th entry of an Nth-order tensor X is denoted by Xj, ... 5,
where i, € {1,---,I,}and n € {1,---, N}. The Frobenius norm of a tensor X is
defined by || X||p = (X, X)V/2[?]. 2 € RI*12 is a binary index set: £2;, ... i, = 1
if A, ... iy is observed, and §2;, ... ;,, = 0 otherwise. Py is the associated sampling
operator which acquires only the entries indexed by 2, defined as:

(X (i, in) € 02
(o) = g i S0 n

where £2° is the complement of £2, and P (X) + Po-(X) = X.
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Definition 1 Mode-n Product. A mode-n product between a tensor X € RI*xIn
and a matrix/vector U € RIn*Jn s denoted byY = X x, UT. The size of Y is
Iy x - X Iy X Jy X Ipy1 X -+ X Iy, with entries given by Vi, ...i, 1 jpiniq-in =
Zin Xil"'in—linin+1"'iNUinyj'n,’ and we have Y(n) = UTX(.,L)[?]

Definition 2 Mode-n Unfolding. Unfolding, a.k.a., matricization or flattening, is the
process of reordering the elements of a tensor into matrices along each mode [?]. A
mode-n unfolding matrix of a tensor X € R1**IN s denoted as Xn) € RIn* sz o=

2.2 Tucker Decomposition

A tensor X € RIxI2xxIn js represented as a core tensor with factor matrices in
Tucker decomposition model [?]:

X = Gx;UDx,U® ... x UM, )

where {U™ ¢ RI»*fn n = 1,2...N, and R, < I,} are factor matrices with
orthogonal columns and G € RF1*R2xXEx g the core tensor with smaller dimen-
sion. Tucker-rank of an Nth-order tensor X is an /N-dimensional vector, denoted as
(Ri,---,Ry), where Ry is the rank of the mode-n unfolded matrix X, of &' Fig-
ure [I] illustrates this decomposition. In this paper, we regard the core tensor consists of
the extracted features of a tensor.

L—-\l !

FARE 9l u»

Fig. 1. The Tucker decomposition of tensors (a third-order tensor X' shown for illustration).

3 Feature Extraction for Incomplete Data
3.1 Problem Definition

Given M tensor samples {71, - , T, -, Tar } with missing entries in each sample
T € RIVXIN [ g the mode-n dimension. We denote 7 = [T1, -+« , Tyn, - Tr] €
RIXXINXM ‘\where the M are the number of tensor samples concatenated along the
mode-(N + 1) of 7. For feature extraction (dimension reduction), we aim to directly
extract low-dimensional features G = [G1, -+ , G, - - Gar| € REAX X BENXM (R - <
I,,n=1,---,N) from the given high-dimensional incomplete tensors 7.

Remark: This problem is different from the case of data with corruptions (e.g., noise
and outliers) widely studied in [?,?,?,?]: Only if the corruptions are arbitrary, missing
data could be regarded as a special case of corruptions (with the location of corruption
being known). However, the magnitudes of corruptions in reality are not arbitrarily
large. In other words, here we study a new problem and existing feature extraction
methods are not applicable.
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3.2 Formulation of the Proposed Method: TDVM

To solve this problem, we propose an unsupervised feature extraction method. Based
on Tucker decomposition, we impose the nuclear norm on the core tensors of observed
tensors while minimizing reconstruction errors, and meanwhile maximize the variance
of core tensors (features), i.e., incorporating low-rank Tucker Decomposition with fea-
ture Variance Maximization, namely TDVM. Thus, the objective function of TDVM is:

M
1
min X — G UD - x U2
Xm,gm,sm,wmmzzl 5| Grm 1 N 2
M M
1 - 3)
m=1 m=1

where {U™ € RI»*En}N | are common factor matrices with orthonormal columns.
I € R»*Fn is an identity matrix. G,,, is the core tensor which consists of the extracted
features (analogous to the singular values of a matrix) of an incomplete tensor 7, with
observed entries in §2. ||G,, ||« is the nuclear norm of G,, (i.e., the summation of the
singular values of the unfolded matrices along modes of G,, [?]). G = ﬁ Zn]\le G is
the mean of core tensors (extracted features).

Remark: Our objective function (3) integrates three terms into a unified framework:

— The first term: minimizing >0 /[, — Grx UMW - x y U2, aims to
minimize the reconstruction error based on given observed entries.

— The second term: minimizing Z%Zl ||Gm]|«, aims to obtain low-dimensional fea-
tures. It is proved that imposing the nuclear norm on a core tensor G,, is essentially
equivalent to that on its original tensor X, [?]. We thus obtain a low-rank solution,
ie. R, can be small (R,, < I,). Thus, the learned feature subspace is naturally
low-dimensional. Besides, imposing nuclear norm on core tensors G,, instead of
original &), saves computational cost.

— The third term: minimizing — Zﬁf:l (|G — G||%., is equivalent to maximize the
variance of extracted features (core tensors) following PCA. We thus explore the
relationships of incomplete tensors via variance maximization while estimating the
missing entries via the first and second term (low-rank Tucker decomposition).

By this unified framework, we can efficiently extract low-dimensional informative
features directly from observed entries, which is different from tensor completion meth-
ods (only focusing on data recovery without considering the relationships among sam-
ples for effective feature extraction) and “two-step” strategies (the reconstruction error
from tensor completion step probably deteriorates the performance of feature extraction
in the succeeding step, and combining two methods is generally time consuming).

3.3 Optimization by ADMM

To optimize (3) using ADMM, we apply the variable splitting technique and introduce
a set of auxiliary variables {S,, € RFv>xE~ 4y = 1...M,n = 1,--- N}, and
then reformulate (3) as:
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M
1

min 2NX, — G UM o x y U2
Xm,gm,sm,mm; 2” Gm <1 N I%

M M

! ; @

2 USulle = 5 D G G-

m=1 m=1

st Pa(Xn) = Pa(Tm), Sm = G, UM UM = 1.

For easy derivation of (@), we reformulate it by unfolding each tensor variable along
mode-n and absorbing the constraints. Thus, we get the Lagrange function as follows:

M N
1 n n n n T n
L= 3 (GIXW - WGP+ S
m=1n=1 (5)

1 _
+ (Yo, G = S0 + BIIGE =807 - Sl - GU3)

where P = UM ®...Q U QU ...QUW ¢ RILiznlixIljxn
and {Y,n, € REILiznBi o — 1 ... Nm =1,-.., M} are the matrices of La-
grange multipliers. ¢ > 0 is a penalty parameter. Xg}f ) ¢ R Ijzn & and {G,(ff ), sﬁ,if ),
G} ¢ Rfn XIjn B3 are the mode-n unfolded matrices of tensor X, and {core ten-
sor G,,,, auxiliary variable S,,, mean of features G}, respectively.

ADMM solves the problem (@] by successively minimizing £ over { Xg,? ) , GEJJ ) , Sﬁ,? ) ,
U™}, and then updating Y ...

Update SS:) The Lagrange function (§) with respect to SSJZ ) is,

M N
n 1% n n
Logr =D 3 (IS5 + SIGE + Yonn /) = ST [13). ©)
m=1n=1
To solve (6), we use the spectral soft-thresholding operation [?] to update s(n).
1
ng?) = proxl/u(Ggg) + Y, /1) = Udiag(max o — ;,O)VT7 (7

where prox is the soft-thresholding operation and Udiag(max o — /lw 0)V'T is the Sin-
gular Value Decomposition (SVD) of (Gsff) + Yo /1)

Update U™ The Lagrange function (3 with respect to U™ is:
MoN - T
- ZIX™) _ g gp) 2 (n) yn —
Lom =Y SIXG) —UMGIP™ G, st UM UM =1, (8)

m=1n=1

According to the Theorem 4 in [?], the minimization of the problem () over the

matrices {UM) ... UMW)} having orthonormal columns is equivalent to the maxi-
mization of the following problem:
T
U™ = arg max trace(U(”)TX,(ﬁ)(Ggg)P(”)T) ) )

where trace() is the trace of a matrix, and we denote W (™) = Ggﬁ )P(”)T.
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Algorithm 1 Low-rank Tucker Decomposition with Feature Variance Maximization

(TDVM)
1: Input: Incomplete tensors 7 = [T1,- -+, Tm, - Ta], £2, u, and the maximum iterations
K, the dimension of core tensors (features) D = [Ry, - - , Rn], and stopping tolerance tol.

2: Imitialization: Set Po(Xm) = Po(Tm), Pec(Xm) = 0,m = 1,---,M; initialize
{Gm}M_, and {U<")}£¥:1 randomly; po = 5, p = 10, timaz = 1el0.

3: form = 1to M do

4 for k =1to K do

5 forn =1to N do

6: Update S, U™ and G\ by (), (10) and (12) respectively.
7 Update Y by Y = Y + (G — si).

8 end for

9: Update X, by (13).

10: Update pig+1 = min(ppk, hmaz)-

11:  end for

12: If||Gm — Sml|%/1Gm||% < tol, break; otherwise, continue.

13: end for

14: Output: Extracted features (core tensors): G = [G1, -+ , Gm, - Gu].

The problem (J) is actually the well-known orthogonal procrustes problem [?],
whose global optimal solution is given by the SVD of Xg,’f )W(”)T ie
U — gy’ (10)

where U and V(™) are the left and right singular vectors of SVD of Xg,? )W(”)T,
respectively.

Update Gg:) The Lagrange function (3) with respect to G(n)

=
Log = X5 =UMIGEPO E + LIGE G + Yo /ull}
)
_ - I G(n G (n)2 )
r H( ) iy Z I3
Then we set the partial derivative aG( to zero, and get:
G = ( CONR VR § (D) X(n)p(n))
M2 +2M —1 2M -1 nt m
1 1M " 12)
n
~(g7 =30 22 G-
i#m
Update X,,, The Lagrange function (3)) with respect to X’ is:
M
1
== Xy — G U o y U2,
5 n; I Gmx1 NUE 13)

s.t. P (Xn) = Pa(Tn),
By deriving the Karush-Kuhn-Tucker (KKT) conditions for function (13), we can up-
date Xm by X?YL - PQ( ’m) + PQ”( 'rn), where Zm = g’rnxlU(l) T ><NU(N)~
We summarize the proposed method, TDVM, in Algorithm 1]
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3.4 Complexity Analysis

We analyze the complexity of TDVM following [?]. For simplicity, we assume the
size of tensor is [y = --- = Iy = I, and the feature dimensions are Ry = --- =
Ry = R. At each iteration, the time complexity of performing the soft-thresholding
operator (7) is O(M N RN*1). The time complexities of some multiplication operators
in (T0)/(12) and (13) are O(M N RI™) and O(M RI™), respectively. Hence, the total
time complexity of TDVM is O(M (N + 1) RI™) per iteration.

4 Experimental Results

We implemented TDVME| in MATLAB and all experiments were performed on a PC
(Intel Xeon(R) 4.0GHz, 64GB).

4.1 Experimental Setup

Compared methods: We compare our TDVM with nine methods in three categories:

— Two tensor completion methods based on Tucker-decomposition: HaLRTC [?] and
gHOI [?]. The recovered tensor are regarded as the features.

— Six {tensor completion methods + feature extraction methods} (i.e., “two-step”
strategies): HaLRTC + PCA [?], gHOI + PCA, HaLRTC + MPCA [?], gHOI +
MPCA, HaLRTC + LRANTD [?] and gHOI + LRANTD.

— One robust tensor feature learning method: TRPCA [?].

After feature extraction stage, we use the Nearest Neighbors Classifier (NNC) to eval-
uate the extracted features on two real data for face recognition. We had also evaluated
TDVM on MNIST handwritten digits [?] for object classification, and TDVM obtains
the best results in all cases. We do not report here due to limited space.

Data: We evaluate the proposed TDVM on two real data for face recognition tasks.
One is a subset of Facial Recognition Technology database (FERETE [?], which has
721 face samples from 70 subjects. Each subject has 8-31 faces with at most 15 degrees
of pose variation and each face image is normalized to a 80 x 60 gray image. The
other is a subset of extended Yale Face Database B (Yaler| [?], which has 2414 face
samples from 38 subjects. Each subject has 59-64 near frontal images under different
illuminations and each face image is normalized to a 32 x 32 gray image.

) | E
(a) (b)
Fig. 2. One example of (a) original images of FERET and YaleB with (b) 50% pixel-based and
with (c) 40 x 30 and 16 x 16 block-based missing entries, respectively.
4 Codes and data: |https://www.dropbox.com/sh/h4k07sstdmthd80/
AABMPFEQDDz-NzKWXIhDnLLOa/Qiquan_TDVM(ECML_198) ?2d1=0

> http://www.dsp.utoronto.ca/~haiping/MSL.html
® http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Missing data settings: We set the tensors with two types of missing data:

— Pixel-based missing: we uniformly select 10% — 90% pixels (entries) of tensors as
missing at random. Pixel-based missing setting is widely used in tensor completion
domain. One example (e.g., missing 50% entries) is shown in Fig. [2(b)

— Block-based missing: we randomly select B; x Bs block pixels of each tensor
sample as missing. The missing block is random in each sample. One example
(e.g., {B1 = 40, By = 30} for FERET and {B; = 16, B, = 16} for YaleB) is
shown in Fig. In practice, some parts of a face can be covered by some objects
such as a sunglass, which can be regarded as the block-based missing case.

Intuitively, handling data with block-based missing is more difficult than that with pixel-
based missing if same number of entries are missing.

Parameter settings: We set the maximum iterations K = 200,70l = le — 5 for all
methods and set the feature dimension D = Ry X Ry = {40 x 30,16 x 16} for TDVM,
gHOI and LRANTD on {FERET, YaleB} respectively. In other words, we directly learn
40 x 30 x 721 features from FERET (80 x 60 x 721) and extract 16 x 16 x 2414 features
from YaleB (32 x 32 x 2414). Other parameters of the compared methods have followed
the original papers.

Applying extracted features for face recognition using NNC, we randomly select
L = {1,2,---,7} extracted feature samples from each subject (with 8-31 samples)
of FERET for training in NNC. On YaleB, we randomly select L = {5,10,---,50}
extracted feature samples from each subject (with 59-64 samples) for training.

4.2 Parameter Sensitivity and Convergence Study

Effect of feature dimension D: We study the effect of TDVM with different feature
dimensions (size of each core tensor) for face recognition on FERET. We set the feature
dimension D of each face sample as R; X Ro in TDVM and show the corresponding
face recognition results. Figure [3|shows that TDVM with different feature dimensions
stably yields similar recognition results on FERET in both pixel-based and block-based
missing cases, excepting D = 5 x 5 (i.e., only 25 features are extracted from each
80 x 60 face image) where the number of features are too limited to achieve good
results. Since a larger D costs more time and we aim to learn low-dimensional features,
here we set D = R X Ry = 40 x 30 and 16 x 16 for TDVM to extract features from
FERET and YaleB, respectively.

0.95

~ |©Dp=5x5
L, D=8x6

D=12x 15
8D =25 x 20

D=30x 25
EED =40 x 30
€] D =40 x 40
D =50 x 50

D =50 x 70 ;
3D =80 x 60 4 3 D =80 x 60

1 2 3 4 5 6 7 1 2 3 4 5 6 7
L (Missing Pixels = 50%) L (Missing Block = 40 x30)

(a) FERET with 50% missing pixels (b) FERET with 40 x 30 missing block
Fig. 3. Recognition results on FERET via TDVM with different feature dimension Ds.

Recognition Rate
Recognition Rate
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10° 10°
#rMissing Pixels = 10% cMissing Block = 5 x 10
© Missing Pixels = 30% © Missing Block = 20 x 20
% Missing Pixels = 50% ¥ Missing Block = 40 x 30
S 10% E] Missing Pixels = 90% S 10% £l Missing Block = 55 x 55
i i
o )
= >
= k&
g 10 1010
108 1015
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

Fig.4. Convergence curves of TDVM in terms of Relative Error: ||Gp —

Number of Iterations

(a) FERET with pixel-based missing entries

Number of Iterations

(b) FERET with block-based missing entries

FERET with (a) pixel-based / (b) block-based missing entries.

%
10% YR 10%8 S0
=05 iy =05
Q“o =1 (.) =1
. Sy =15 .
5 10 %eu= 2 5 10°
i iy =5 ]
2 o =10 2
kS| = z
5 Py =15 %
X 1910 Ay =20 @ 1910
| 114 = 25
107 1015
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Number of Interations (Missing Pixels = 50%) Number of Interations (Missing Block = 40 x30)
(a) TDVM with different o (fix p = 10) (b) TDVM with different p10 (fix p = 10)
10° 100
5 10° 0 5 10°
i i
[ [}
> =
= s
[3] [
['4 10710 @ 10'10
10%® 1071
9 11 13 15 17 19 21 1 3 5 7 9 11 13 15 17 19 21

1 3 5 7
Number of Interations (Missing Pixels = 50%)

(c) TDVM with different p (fix po = 5)

Number of Interations (Missing Block = 40 x 30)

(d) TDVM with different p (fix o = 5)

Smll7/l1Gm || % on

Fig. 5. Convergence curves of feature extraction on FERET with pixel-based (50%) / block-based
(40 x 30) missing entries via TDVM with ten different values of 1o and p, respectively.

Convergence: We study the convergence of TDVM in terms of Relative Error: ||G,, —
Simll%/11Gm||% on FERET with pixel/block-based missing entries. Here, we set 10 = 5
and p = 10 for TDVM. Figure [4] shows that the relative error dramatically decreases to
a very small value (around 10~13 order) with about 10 iterations. In other words, the
proposed TDVM converges fast within 5 iterations if we set tol = le — 5.

Sensitivity analysis of parameter 110 and p : In line 10 of Algorithm[I] we iteratively
update the penalty parameter p with a step size p from an initial 1o, which has been
widely used in many methods such as [?] and makes the algorithm converges faster.
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Recognition Rate
Recognition Rate

1 2 3 4 5 6 7
L (Missing Pixels = 50%) L (Missing Block = 40 x30)

(a) TDVM with different p10 (fix p = 10) (b) TDVM with different p (fix p = 10)

Recognition Rate
Recognition Rate

1 2 3 4 5 6 7 1 2 3 4 5 6 7
L (Missing Pixels = 50%) L (Missing Block = 40 x 30)

(¢) TDVM with different p (fix po = 5) (d) TDVM with different p (fix o = 5)

Fig. 6. Recognition results on FERET with pixel-based (50%) / block-based (40 x 30) missing
entries via TDVM with ten different values of po and p, respectively.

Figures[5]and[6] show the convergence curves and corresponding recognition results on
FERET with 50% missing pixels and 40 x 30 missing block via TDVM with different
to and p respectively. As seen from Fig. [5(a) and [5(b)] with different 19, TDVM stably
converges to a small value (around 10~ '? order) with around 10 iterations. In terms of
p, the relative errors converge to a small value faster if TDVM with a larger p (e.g.,
p = 10), as shown in Fig. and [5(d)] Figures [6(a)| and show that the feature
extraction performance of our TDVM is stable and not sensitive to the values of 1 and
p on FERET with 50% missing pixels. Besides, as seen from Fig. and [6(d)] with
a larger pg (o > 1) and p (p > 1.5) for TVDM on FERET with 40 x 30 block-based
missing entries, the corresponding face recognition results are similar and stable.

In general, we do not need to carefully tune the parameter 1 and p for the proposed
TDVM. In this paper, we set 110 = 5 and p = 10 in Algorithm|[T]for all tests.

4.3 Evaluate Features Extracted from Data with Pixel/Block-based Missing

To save space, for pixel-based missing case, we report the results of FERET and YaleB
with {10%, 30%, 50%, 90%} missing pixels in Table[I] For block-based missing case,
we report the results of FERET with {5 x 10, 20 x 20, 40 x 30, 55 x 55} missing
block and YaleB with {5 x 5, 8 x 10, 16 x 16, 30 x 25} missing block in Table
respectively. In each pixel/block-based missing case, we report the recognition rates of
randomly selecting L = {1,7} and L = {5,50} extracted feature samples from each
subject of FERET and YaleB for training in NNC, respectively. We highlight the best
results in bold fonts and second best in underline respectively. We repeat the runs 10
times of feature extraction and of recognition separately, and report the average results.
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Table 1. Face recognition results (average recognition rates %) on the FERET and YaleB with
{10%, 30%, 50%, 90%} pixel-based missing entries.

Data FERET (Image size 80 X 60) YaleB (Image size 32 X 32)

Missing Pixels 10% 30% 50% 90% 10% 30% 50% 90%

L 1 7 1 7 1 7 1 7 5 5|5 505 5|5 50
HaLRTC 36.44 73.59|36.50 73.07(35.75 72.42(21.75 44.03||35.85 76.71(34.78 75.08|31.55 71.77|12.87 31.83
gHOI 36.41 73.94|36.52 73.94(36.53 74.07|29.65 63.72||35.42 76.38|33.40 73.74(28.68 66.91|10.51 19.82

HaLRTC + PCA 32.23 69.74(26.37 63.38(25.56 59.91| 6.84 9.05 {|22.22 51.26|20.70 48.00{16.47 36.63|13.75 32.59

gHor + PCA 32.24 68.96(28.74 63.51(26.41 61.26{13.90 24.68((29.71 51.79|15.63 36.69(18.42 41.96| 4.95 6.75

HaLRTC + MPCA  (40.49 75.37(40.08 73.68(38.94 72.77| 4.79 7.62 ||30.23 73.07|29.62 71.36|28.57 69.34|14.45 38.62

gHol + MPCA 41.18 75.9741.01 75.89|40.14 74.68| 8.76 14.16(|30.02 72.59|27.37 68.07|13.71 43.25/4.79 6.17

HaLRTC + LRANTD|34.85 73.64|34.64 72.60|33.89 71.86|15.73 27.88||23.13 55.93|22.03 52.53(20.52 48.79| 9.53 22.55

gHol + LRANTD  |36.44 74.11|36.44 74.07|36.68 74.33|30.06 64.42||22.66 54.30(21.64 52.20(21.28 50.33{10.06 20.53

TRPCA 51.27 84.33146.24 82.08|41.71 79.09| 4.61 10.39(|32.66 71.83|29.51 68.72|22.56 53.99|2.65 2.72

TDVM 85.50 96.23|84.62 95.58(82.01 94.59(58.39 79.57|(93.21 98.40|92.28 98.91/91.93 98.13|87.15 97.20

Face recognition results on FERET/YaleB with pixel-based missing TDVM out-
performs the other nine methods by {34.69%, 35.72%, 35.19%, 46.65%} in all cases of
FERET with {10%, 30%, 50%, 90%} missing pixels on average respectively, as shown
in the left half of Table[T] Besides, TRPCA achieves the second best results in six cases
given more than 50% observations while its performance drops dramatically when miss-
ing 90% pixels, where the gHOI + LRANTD takes the second place. Moreover, with
less training features (e.g. L = 1) in NNC, our TDVM has more advantage as it aims
to extract low-dimensional informative features.

The right half of Table [ shows that TDVM outperforms the best performing exist-
ing algorithm (HaLRTC) in all cases of YaleB with {10%, 30%, 50%} missing pixels by
{39.52%,40.67%, 43.37%} on average, respectively. When the missing rate achieves
90%, the performance of compared methods drop sharply, excepting HaLRTC + MPCA
which wins other existing methods in this scenario, where our TDVM keeps the best
performance with 77.45% over all the existing methods.

Face recognition results on FERET/YaleB with block-based missing The left half of
Table shows that TDVM outperforms all competing methods by {35.99%, 37.70%,
44.48%,50.68%} in all cases of FERET with {5 x 10, 20 x 20, 40 x 30, 55 x 55}
missing blocks on average, respectively. Furthermore, gHOI/HaLRTC + MPCA and
HaLRTC share the second place in these cases.

As shown in the right half of Table 2} TDVM outperforms the nine state-of-the-art
methods by {40.53%, 40.40%, 46.07%, 50.42%} in all cases of YaleB with {5 x 5, 8 x
10, 16 x 16, 30 x 25} missing blocks on average, respectively. Specifically, HaLRTC is
the best performing existing algorithm in the cases of missing {8 x 10, 16 x 16, 30 x 25}
block, but our TDVM outperforms it by {29.55%, 30.31%, 30.02%} respectively there.
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Table 2. Face recognition results (average recognition rates %) on the FERET and YaleB with
block-based missing entries.

Data FERET (Image size 80 X 60) YaleB (Image size 32 x 32)

Missing Block 5x 10 | 20x20 | 40 x 30 | 55 x 55 5% 5 8x 10 |16 x 16 | 30 x 25
L 1 7 1 7 1 7 1 7 5 5|5 505 5|5 50
HaLRTC 36.37 73.64|35.75 72.77|33.96 71.21|27.24 59.31||36.02 76.73|35.27 76.30|33.08 74.38|27.43 67.06
gHOI 36.44 73.55|35.53 72.86(31.55 68.10{22.70 52.12{|32.86 74.07|31.24 72.86|30.67 70.27|20.13 49.14
HaLRTC + PCA 31.32 66.67|31.27 65.41(20.14 52.68(17.22 40.22{|43.49 83.54|33.61 57.57|19.94 46.61|15.06 35.21
gHol + PCA 26.82 60.13]20.49 47.92{10.86 25.19| 5.38 10.48||21.69 58.72|19.52 52.43|13.27 31.89| 6.88 11.95
HaLRTC + MPCA  |41.09 76.06|41.38 76.32|21.11 53.64|22.52 53.20||30.31 73.56(29.53 71.54(27.46 68.17|17.52 46.01
gHol + MPCA 41.43 76.58(22.89 56.80(10.81 21.47|18.08 36.32{(24.14 64.81|21.37 60.88| 9.32 21.01| 7.58 16.23
HaLRTC + LRANTD|36.41 73.98|35.73 73.55|33.72 70.39|26.90 58.53||22.27 53.66{21.47 51.63|21.20 50.00{11.98 30.43
gHol+ LRANTD  [36.53 74.16|35.12 74.29|31.31 68.27|21.83 50.69||21.45 52.12|20.69 49.92{19.98 47.68|11.26 24.61
TRPCA 39.63 77.40|36.67 74.98(30.55 63.64(21.89 45.97||33.21 72.20{32.09 70.88(30.21 68.35|25.90 58.85
TDVM 84.21 96.45|81.67 94.81|76.82 91.99(75.04 91.95|(82.51 95.76|75.54 95.14|72.79 95.29|59.91 94.63

Table 3. Time cost (seconds) of feature extraction on the FERET and YaleB with pixel/block-
based missing entries.

Data | Missing |[HaLRTC|gHOI [HaLRTC +|gHOI +{HaLRTC +|gHOI +| HaLRTC + | gHOI + [TRPCA|TDVM
Pixels/Block| [?] [?] | PCA[?] | PCA |MPCA [?]|MPCA [LRANTD [?][LRANTD| [?]

10% 101.6 | 67.2 | 1127 | 994 | 2704 |2899| 237.1 383.1 | 231.0 | 32.6

30% 1142 |1498| 1208 |3105| 3133 |5168| 289.6 4139 | 269.2 | 333

FERET| 50% 1237 |2304| 1299 |533.6| 3326 |6875 325.0 6129 | 2127 | 237
90% 1200 | 1753 ] 104.1 |442.1| 132.1 |654.8 1112 563.6 | 1182 | 20.1

5x 10 | 103.1 |521.3| 1148 | 1665| 1915 |254.5| 4455 521.3 | 170.0 | 29.3

20 x 20 | 1105 |599.7| 1204 |2202| 178.7 |299.1 459.9 599.7 | 165.9 | 24.0

FERET| 40 x 30 | 119.1 |555.1| 1299 |221.7| 2095 |2202| 479.0 555.1 | 139.8 | 21.7
55 x 55 | 166.6 |4659| 117.3 | 2082 | 2450 |213.1 3775 4659 | 1445 | 303

10% 127.8 |3182| 183.6 |721.8| 619.6 [1095.0| 494.6 6743 | 156.5 | 45.9

30% 150.8 |631.3| 2035 |14239| 650.6 [2202.0| 575.2 16452 | 160.0 | 45.5

YaleB 50% 1609 |624.6| 216.1 |1304.9| 6845 [1783.6| 565.0 22182 | 1602 | 45.3
90% 241.0 [1052.8] 2234 [10303| 4255 |[1152.7 590.0 997.6 | 118.7 | 49.6

5% 5 177.0 |5163| 179.1 | 653.6 | 610.7 | 788.1 499.7 24226 | 160.4 | 49.5

8x 10 | 169.3 |598.9| 206.6 |601.9| 5732 |1483.3| 502.1 1576.4 | 163.6 | 47.0

YaleB | 16 x 16 | 2109 |611.2| 2268 |611.0| 6828 [1600.7| 571.7 880.8 | 161.8 | 52.5
30 x 25 | 1754 |568.0| 212.1 |569.0| 4263 [1453.0| 5135 548.7 | 133.6 | 45.2

4.4 Computational Cost

We report the average time cost of feature extraction in Table 3] As shown in Table [3]
TDVM is much more efficient than all the compared methods in all cases, as we impose
nuclear norm on core tensors instead of original tensors to learn low-dimensional fea-
tures. Specifically, HaLRTC is the second fastest methods on FERET with block-based
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missing entries while slower than gHOI and HaLRTC + PCA in two pixel-based missing
cases. Besides, HaLRTC is also the second efficient method on YaleB with pixel-based
missing entries excepting the case of missing 90% pixels. In the block-based missing
cases of YaleB, TRPCA is faster than TDVM, but it yields worse results. Moreover, the
“two-step” strategies such as gHOI + MPCA/LRANTD are the most time consuming
(more than 10 times slower than TDVM on average).

4.5 Summary of Experimental Results

— TDVM outperforms the nine competing methods in all cases of face recognition on
two real data, especially on data with more missing entries. Besides, our method is
much more efficient than all compared methods. Moreover, with less training fea-
tures (e.g. L = 1 for FERET and L = 5 for YaleB) in NNC, TDVM shows more
advantage as it extracts low-dimensional informative features. These results veri-
fies the superiority of incorporating low-rank Tucker decomposition with feature
variance maximization.

— The tensor learning method (TRPCA) is the best performing existing algorithm
in six cases of FERET with pixel-based missing entries. However, it works much
worse than TDVM on data with increasing missing entries. For example, on YaleB
with 90% missing pixels, TRPCA loses up to 94.48% than TDVM on average.

— Tensor completion methods (HaLRTC and gHOI) obtain similar results in most
cases and HaLRTC achieves the second best results in about half of all cases,
while TDVM outperforms these two methods by 34.92% and 41.71% on average
on FERET and YaleB respectively. These results echo our claim: tensor comple-
tion methods focus on recovering missing data and do not explore the relationships
among samples for effective feature extraction.

— The “two-step” strategies (e.g., gHOI + PCA/MPCA) do not have much improve-
ment and even perform worse than using only tensor completion methods (e.g.,
gHOI), as we claimed that reconstruction errors from completion step can deterio-
rate the performance in feature extraction step. Although gHOI + LRANTD/MPCA
and HaLRTC + PCA/MPCA achieve the second best results in a few cases, TDVM
outperforms the “two-step” strategies in all cases as we extracts informative fea-
tures directly from observed entries.

5 Conclusion

In this paper, we have proposed an unsupervised feature extraction method, i.e. TDVM,
which solves the problem of feature extraction for tensors with missing data. TDVM
incorporates low-rank Tucker decomposition with feature variance maximization in
a unified framework, which results in low-dimensional informative features extracted
directly from observed entries. We have evaluated the proposed method on two real
datasets with different pixel/block-based missing entries and applied the extracted fea-
tures for face recognition. Experimental results have shown the superiority of TDVM
in both pixel-based and block-based missing cases, where the proposed method con-
sistently outperforms the nine competing methods in all cases, especially on data with
more missing entries. Moreover, TDVM is not sensitive to parameters and more effi-
cient than the compared methods.
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