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Abstract. In this paper, we consider a generalized variant of inverse
reinforcement learning (IRL) that estimates both a cost (negative re-
ward) function and a transition probability from observed optimal be-
havior. In theoretical studies of standard IRL, which estimates only
the cost function, it is well known that IRL involves a non-identifiable
problem, i.e., the cost function cannot be determined uniquely. This
problem has been solved by using a new class of Markov decision pro-
cess (MDP) called a linearly solvable MDP (LMDP). In this paper, we
investigate whether a non-identifiable problem occurs in the generalized
variant of IRL (gIRL) using the framework of LMDP and construct a
new gIRL method. The contributions of this study are summarized as
follows: (i) We point out that gIRL with LMDP suffers from a non-
identifiable problem. (ii) We propose a Bayesian method to escape the
non-identifiable problem. (iii) We validate the proposed method by per-
forming an experiment on synthetic data and real car probe data.

Keywords: Inverse reinforcement learning, Linearly solvable MDP, Bayesian
method

1 Introduction

Inverse reinforcement learning (IRL) is a method that estimates the cost (nega-
tive reward) function of a certain class of Markov decision process (MDP) from
an agent’s optimal behavior. Since designing a truly effective cost function is
regarded as a difficult problem in various applications of reinforcement learn-
ing (RL) including robot control tasks, IRL attracted the attention of robotics
researchers from an early stage [1]. Its application area is now spreading and the
effectiveness of IRL has been reported for taxi driver destination prediction [2],
preferred route estimation after a natural disaster [3], and natural language
processing [4]. These studies show that IRL can estimate the cost functions of
entities, such as people and animals, whose internal structure is unobservable
and whose preferences remain vague.

In this paper, we consider a generalized variant of IRL that simultaneously
estimates both the cost function and transition probability. Since this problem
is a generalization of existing IRL methods that estimate only the cost function,
we call it generalized IRL (gIRL). Figure 1 shows the input and output of RL,
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Fig. 1. Input and output of RL, IRL and gIRL with linearly solvable MDP.

IRL and gIRL. Specifically, as shown in the figure, we tackle the gIRL using the
framework of the linearly solvable MDP (LMDP) [5].

LMDP has been proposed as a new class of MDP where a forward prob-
lem (RL) is more easily solved than with standard MDP [5]. Dvijotham showed
that IRL with the LMDP has a unique solution [6], i.e., the cost function gener-
ating agent behavior is uniquely identified. It is regarded as important result in
IRL. The first IRL paper [7] proved the existence of a non-identifiable problem
with standard MDP, and therefore the cost function is not unique and that a
cost function with entirely zero values is always one of the solutions. Until Dvi-
jotham’s paper was published it had remained an open issue as to whether it was
possible to avoid a non-identifiable problem. 1 However, a gIRL with the LMDP
has not yet been studied. Since the number of transition probability parameters
of the LMDP is smaller than that of a standard MDP, the use of the LMDP is
suitable for gIRL.

The study most closely related to ours is the work reported by Makino and
Takeuchi [8], which considers gIRL on the partially observable MDP for con-
structing efficient apprenticeship learning methods. It is experimentally con-
firmed that gIRL formulation contributes to the realization of a more effective
policy [8]. However, the theoretical aspect of gIRL remained unknown and there
is no gIRL method for the LMDP.

In this paper, we provide a theoretical analysis and a new method for gIRL.
Beginning with an investigation as to whether a non-identifiable problem occurs
in gIRL with LMDP, we establish a new formulation of gIRL and new gIRL
methods. We apply the proposed method with both synthetic data and real car
probe data collected in Yokohama City, Japan. The contributions of this paper
can be summarized as follows:

– We point out that generalized IRL using the framework of LMDP involves
a non-identifiable problem; the cost function and transition probability can-
not be uniquely estimated. This is because we cannot distinguish between

1 Although Ziebart et al. [2] also solve the non-identifiable problem by using the max-
imum entropy principle, Dvijotham and Todorov show that Ziebart’s formulation is
equivalent to the special case of an inverse problem of LMDP [6].
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the effect of the cost function and that of the transition probability on the
observed transitions.

– To avoid the non-identifiable problem, we adopt a Bayesian approach with
hyperparameters, which is also used approach for IRL with a standard
MDP [8–11]. We also extend the LMDP to a multiple intention setting [11,
12] and use it to formulate generalized IRL. This enables us to apply the
proposed method to many practical problems such as traffic data analysis.
Our new Bayesian gIRL method with the extended LMDP can estimate the
cost functions, the transition probability, and the hyperparameters.

– We confirm the effectiveness of the proposed method by performing numer-
ical experiments using both synthetic data and real car probe data. The
result of our car probe data experiment shows that the proposed method
can estimate the LMDP parameters, which reflect car drivers’ behavior.

The rest of this paper is organized as follows. In §2, we introduce the LMDP.
The non-identifiable problem of the LMDP is illustrated in §3. §4 presents the
extended LMDP and §5 introduces the proposed gIRL method. §6 is devoted to
the experimental evaluation and §7 concludes the paper.

2 Linearly Solvable MDP (LMDP)

In this section, a basic property of the LMDP [5] is introduced. Although the
definition of the LMDP is similar to that of the MDP, its difference is critical
in creating solutions to the forward and inverse problems. Note that this work
focuses on an “infinite horizon discounted cost” case [13]; however, its application
to other settings is straightforward.

Definition of LMDP: The LMDP is defined by the quintuplet {S,A, P̄,R, γ},
where S = {1, 2, · · · , S} is a finite set of states and S is the number of states.A =
{A1,A2, · · · ,AS} is a set of admissible actions at each states. P̄ = {p̄jk}Sj,k=1

indicates passive transition probabilities, each element of which defines the transi-
tion probability from state j to state k when an action is not executed.R : S → R
is a state cost function (negative reward function) and we denote the state cost
at state j as rj . γ ∈ [0, 1) is a discount factor.

In the LMDP, action a is a continuous valued RS dimensional vector and the
action transition probability from state j to state k when action aj = {ajk}Sk=1

is executed is defined by

pjk(aj) = p̄jk exp(ajk). (1)

Note that any action executed at state j, aj , must belong to a set of admissible
actions, Aj , which is defined as

Aj =
{
aj ∈ RS |

∑
k
pjk(aj) = 1; p̄jk = 0→ ajk = 0

}
, (2)

so that the sum of the probabilities equals one. Therefore, the transition prob-
ability itself can be controlled by an action. To execute a certain action, it is
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necessary to pay the action cost defined by action cost function. The action cost
when action aj is executed in state j is defined as

qj(aj) = KL(pj(aj)||pj(0)), (3)

where KL(·||·) is the Kullback-Leibler divergence and pj(a) = {pjk(a)}Sk=1.
Thus, the action cost increases as pjk(a) deviates further from a passive tran-
sition p̄jk. Note that when the action is a zero vector, a = 0, pjk(0) equals
the passive transition probability p̄jk and the action cost qj(0) = 0. Intuitively,
the LMDP is a class of MDP in which the transition probability itself can be
controlled by the payment of the action cost. Unlike standard MDP where the
transition probability is defined separately for each action, the passive transition
probability substantially determines the transition probability of all the actions.
Thus, we consider that it is suitable to use the LMDP for gIRL.

Let π = {aj}Sj=1 be a policy whose element aj indicates the action executed

in state j. The value function of policy π, vπ = {vπj }Sj=1, is defined such that
element vπj indicates the expected sum of the future cost from state j when
following policy π,

vπj = lim
T→∞

EdT

[
T∑
t=1

γt−1 {rst + qst(ast)}
∣∣∣s1 = j

]
. (4)

Here EdT denotes the expectation over trajectory dT = {st}Tt=1, the transitions
from t = 1 to T where st denotes the visit state at time t, which follow probability
P (dT |P̄,π) = pinis1

∏T−1
t=1 pstst+1

(ast). p
ini is the initial state distribution.

Forward Problem with LMDP: The forward problem with the LMDP is
to obtain the optimal policy π∗ = {a∗j}Sj=1 that minimizes the expected sum of
the future cost. The optimal action in state j is given by

a∗j = arg min
aj∈Aj

{
rj+qj(aj)+γ

S∑
k=1

pjk(aj)vk

}
= −γvj− log

( S∑
k=1

p̄jk exp(−γvk)
)
,

(5)

where v = {vj}Sj=1 is the optimal value function vj = minπ v
π
j that can be

computed by solving the optimal equation [5]. Inserting Eq. (5) into Eq. (1),
optimal transition probability, the action transition probability when the optimal
action being executed is written as

p∗jk = pjk(a∗j ) =
p̄jk exp(−γvk)∑
` p̄j` exp(−γv`)

. (6)

We emphasize that the above form of optimal transition probability is a direct
consequence of the LMDP unlike Bayesian IRL, which uses the value function
as a potential function [9].
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3 Generalized IRL and the Non-identifiable Problem

3.1 Generalized Inverse Reinforcement Learning

This section illustrates the non-identifiable problem of generalized IRL (gIRL)
with the LMDP. The purpose of gIRL is to estimate the state cost function and
passive transition probability of the LMDP from a transition log that follows
the optimal transition probability Eq. (6). Figure 1 illustrates the forward and
inverse problems of the LMDP.

A key motivation for gIRL can be explained as follows. Let us consider a
case where the cost function must be estimated only from the past movements
of a person who is interested in a certain place in a city. In this case, the passive
transition probability between places, which can be interpreted as the transition
probability of a person who has a uniform state cost function (same degree
of interest in each place), is of course unknown and cannot be observed. That
is, gIRL is useful for estimating a state cost function when only a set of past
movements is available, which is a common setting in various machine learning
problems.

To determine whether the state cost function and passive transition proba-
bility can be uniquely estimated or not, we consider a case where the amount of
available data is sufficiently large. In this case, the optimal transition probabil-
ity itself can be observed. Therefore, we need to seek the corresponding relation
between the optimal transition probability and a pair consisting of a state cost
function and a passive transition probability.

3.2 Toy Example of Non-identifiable Problem

Figure 2 shows a toy example in which LMDPs with different passive transitions
and value functions provide equivalent optimal transition probabilities. In the
left dotted box in Fig. 2, the passive transition from state-1 to state-1, p̄11, is p
and the value function of state-1, v1, is v. Similarly, in the right dotted box, they
are p′ = p/(K − pK + p) and v′ = − log(K)/γ + v. We can easily confirm that
the optimal transition probabilities for both LMDPs are equivalent for arbitrary
constantK. This means that we cannot identify the passive transition probability
and value function simultaneously from the optimal transition probability. By
considering the transition probability and value function to be parameters and
the optimal transition probability to be a probabilistic model, this is a case where
the model is non-identifiable 2. Note that the above examples are compatible
with the claim made by Dvijotham and Todorov [6]. Since they consider a case
where the passive transition probability is known, the value function can be
uniquely estimated.

Non-identifiability implies the impossibility of estimating the state cost func-
tion uniquely. Let us consider the setting of the constant value K = exp(γv) in

2 The probabilistic model Pθ is called identifiable in statistics if parameter θ1 6= θ2,
then distributions Pθ1 and Pθ2 are different [14]. A model which is not identifiable
is called non-identifiable.
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Fig. 2. An example that indicates that LMDPs with different passive transitions and
value functions provides an equivalent optimal transition probability. This implies that
the passive transition probability and the value function cannot be uniquely estimated
even if the optimal transition probability itself is observed. We call this problem the
non-identifiable problem of gIRL with LMDP.

the previous toy example. In this case, the value and the state cost of state 1
become 0, v1 = r1 = 0, and the passive transition equals the optimal transition,
p̄11 = p∗11. This means that the optimal transition probability of the left LMDP
can be reproduced by the right LMDP with a state cost function whose values
are all zero. This fact immediately leads to the following theorem:

Theorem 1 (Non-identifiability of gIRL with LMDP) Let S and γ be a set of
states and a discount factor. Then, the mapping from a pair consisting of passive
transition probability P̄ ∈ [0, 1]S×S and state cost function R ∈ RS to the optimal
transition probability of the LMDP (S,A, P̄,R, γ) is not one-to-one.

Proof When R = 0, the passive transition probability and optimal transition
probability are identical. Then, for any LMDP, there exists an LMDP that has
an all zero state cost function and a passive transition probability that is identical
to the optimal transition probability of a given LMDP. ut

This is an obviously unacceptable result because the transition probability and
cost function have different roles in RL; cost is a target of the agent to be
minimized, the transition probability determines the possible movements of the
agent. Their two roles should not be mixed.

It is well-known for IRL with standard MDP that the cost function with
entirely zero values is always one of the solutions [7]. Therefore, our observation
indicates that the generalized IRL problem with the LMDP also raises similar
theoretical concerns.

Remark 1 Note that we do not view this as a problem that the optimal
transition is consistent by transformation v′i = vi + c for all states i using a
common constant value c while the passive transition probability remains fixed;
this is because the magnitude relation of the value function holds. This type of
degree of freedom can be removed by, for example, setting the value function of a
certain state at zero. The problem tackled in this paper is the non-identifiability
of the value function and the passive transition probability.
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3.3 Approach for Non-identifiable Problem

We confirmed above that gIRL with LMDP suffers from non-identifiability. This
subsection introduces an idea that can avoid this problem. A promising approach
is to introduce hyperparameters. This approach is the same as that used by Ng
and Russel for IRL with MDP to avoid non-identifiability [7]. They introduce
hyperparameters to make the cost function sparse, i.e., the cost becomes zero in
many states. However, as stated in their paper, a remaining problem was that the
estimated result strongly depends on the manual setting of the hyperparameters.
Therefore, we construct a gIRL method with a Bayesian framework that can
estimate hyperparameters. By automatically estimating the hyperparameters,
their dependency is weakened. The Bayesian approach is promising since its
effectiveness has already been confirmed for standard IRL with an MDP [9–11].
We also introduce a new gIRL formulation for a later experiment.

Our new formulation considers a collection of LMDPs that share state and
passive transition probabilities. The setting is referred to as multiple intention or
multitask IRL in the literature [11, 12]. The following example explains the mo-
tivation behind using this new formulation. Again, let us consider a case where
the state cost function of a certain person needs to be extracted. If the trajec-
tories of several people are available, the task seems obvious when we consider
that only the cost function alone depends on each person and the passive tran-
sition probability is not person dependent. Thus, our new gIRL is formulated
as the problem of estimating everybody’s cost functions and common passive
transition probabilities from observed trajectories. Thanks to this formulation,
hyperparameters for the cost function are defined as common parameters among
all people; this may contribute to performance improvement similar to that de-
scribed in [11]. The next two sections present a rigorous formulation and an
estimation algorithm.

4 Shared-parameter LMDPs

In this section, we re-formulate gIRL. We consider a collection of LMDPs that
share states S, passive transition probability P̄, and discount factor γ. Each
LMDP has its own state cost function, Ri, where i is the index of the LMDP.
We call this collection of LMDPs, shared-parameter LMDPs (SP-LMDPs). We
formulate gIRL as an inverse learning problem to estimate the passive transition
probability and all the state cost functions in the SP-LMDPs. Figure 3 shows
all the parameters of the SP-LMDPs. gIRL with the SP-LMDPs is a natural
extension of IRL because gIRL with SP-LMDPs can be seen as a setting in
which multiple state cost functions are estimated. Each cost function may be
the cost function of a different person, animal and so on. We emphasize that
the setting at which multiple cost functions are defined on a standard MDP has
already been studied [11, 12] but it has not been studied for an LMDP.

We provide a formal definition of SP-LMDPs as follows. SP-LMDPs are de-
fined by the quintuplet {S,A, P̄,R, γ}. The definitions of S, A, P and γ are
equivalent to those for an LMDP while that of R is different. R = (R1, · · · ,RI)
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Fig. 3. Forward and inverse problems of SP-LMDPs. We call this inverse problem,
which estimates all the state cost functions and passive transition probabilities of SP-
LMDPs, gIRL with SP-LMDPs.

is a set of state cost functions and Ri = {rij}Sj=1. I is the number of functions
in the set. From this definition, we can construct I LMDP; the i-th LMDP
is defined as {S,A, P̄,Ri, γ}. Note that SP-LMDPs with I = 1 reduce to an
LMDP.

Since the forward problem of the i-th LMDP can be solved independently
following the method explained in §2, SP-LMDPs pose no difficulty in solving the
forward problem. Let us define V = {vi}Ii=1. vi = {vij}Sj=1 is the optimal value
function of the i-th LMDP. This optimal value function satisfies the following
optimal equation.

vij = min
aij∈Aj

{
rij+qj(aij)+γ

∑
k
pjk(aij)vik

}
= rij− log

(∑
k
p̄jk exp(−γvik)

)
.

(7)

Then, the optimal transition probability from state j to state k is, for the i-th
LMDP, given by

p∗ijk =
p̄jk exp(−γvik)∑
` p̄j` exp(−γvi`)

. (8)

The above optimal transition probability shows that the agent executing the
optimal policy tends to move adjacent states whose value functions are small.

5 Proposed generalized IRL method

5.1 Bayesian Modeling

This subsection details the proposed gIRL method, which can estimate both
the state cost functions and passive transition probabilities with SP-LMDPs
from observed transitions. We denote the transition logs of the i-th LMDP as
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Di and the number of observed transitions from state j to state k in the i-th
LMDP as nijk. We also denote all the transition logs as D = {Di}Ii=1. Our
gIRL method is naturally derived by considering that each transition is gener-
ated by the probability defined in Eq. (8) which has parameters V , P̄. In this
section, we re-parametrize p̄jk as wjk = − log p̄jk. We define W = {wj}Sj=1 and

wj = {wjk}Sk=1. Then, the probability that transition log D is generated given
parameter V ,W can be written as

P (D|V ,W ) =
∏
i

∏
j,k∈S

( exp(−wjk − γvik)∑
` exp(−wj` − γvi`)

)nijk

. (9)

We can avoid the ill-posedness of gIRL, and also obtain the full parameter-
estimation procedure by adopting a Bayesian approach. We define a Gaussian
prior distribution on vi and wj for all i, j given by

P (V |α) =

I,S∏
i,j=1

N (vij |0,
1

α
), P (W |β) =

S∏
j=1

∏
k∈Ωfr

j

N (wjk|0,
1

β
). (10)

Note that Ωfr
j denotes a set of reachable states “from” state j by a one step

transition.3 We also used a conjugate gamma prior on the hyper-parameters,
similar to [15]:

P (α) = G(α|a0, b0) =
ab00
Γ (a0)

αa0−1e−b0α, P (β) = G(β|a0, b0) =
ab00
Γ (a0)

βa0−1e−b0β .

(11)

We set a0 = 10−1 and b0 = 10−2 in an experiment described later. Summarizing
the above, we denote the joint distribution of all the parameters and the set of
trajectories as

P (D,V ,W , α, β) = P (D|V ,W )P (V |α)P (W |β)P (α)P (β)︸ ︷︷ ︸
P (V ,W ,α,β)

. (12)

Figure 4(a) shows a graphical model representation. The posterior distribution
of parameters is given by

P (V ,W , α, β|D) = P (D,V ,W , α, β)/P (D), (13)

where P (D) is the marginal likelihood P (D) =
∫
P (D,V ,W , α, β)dV dW dαdβ.

Since the exact computation of the marginal likelihood is infeasible, we adopt
the variational Bayesian (VB) approach [16] to obtain the posterior distribution.

3 If such adjacency information is not available, consider Ωfr
j as a set of all states S.
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5.2 Variational Bayes

The VB algorithm is designed to obtain the variational distributions that ap-
proximate the posterior distribution. The variational distribution q(V ,W , α, β)
is estimated by minimizing functional F̃ [q,η, ξ], which is defined by

F̃ [q,η, ξ] := Eq
[
log

q(V ,W , α, β)

h(V ,W ,η, ξ)P (V ,W , α, β)

]
(14)

under the constraint that the parameters are independent: q(V ,W , α, β) =
q(V )q(W )q(α)q(β). Note that h(V ,W ,η, ξ) is a lower bound of the likelihood
function (Eq. (9)), i.e., h(V ,W ,η, ξ) ≤ P (D|V ,W ) for all V ,W . η and ξ are
auxiliary variables. The functional F̃ [q,η, ξ] is an upper bound of the negative
log marginal likelihood − logP (D). By minimizing F̃ [q,η, ξ], we can indirectly
minimize the Kullback-Leibler (KL) divergence between the variational distri-
butions and posterior distribution.

Figure 4(b) makes it easier to understand our optimization scheme. We define
functional F̄ as follows:

F̄ [q] := Eq
[
log

q(V )q(W )q(α)q(β)

P (D,V ,W , α, β)

]
. (15)

This is also an upper bound of the negative log marginal likelihood, and its
difference is given by the KL divergence between variational distributions and
the posterior distribution (See the green box in Fig. 4(b)). F̃ [q,η, ξ] is always
greater than F̄ [q], and its difference is given by the average log ratio of function
h and the likelihood function (See the blue box). Since log marginal likelihood
does not depend on variational distributions, minimizing F̃ w.r.t. variational
distribution q corresponds to minimizing the sum of the KL divergence and the
average log bound-likelihood ratio. Minimizing F̃ w.r.t. auxiliary variables η and
ξ corresponds to minimizing the average log bound-likelihood ratio. Iterating this
procedure yields a variational distribution.

Remark 2 For probabilistic models belonging to an exponential family, the
VB algorithm is derived by using F̄ [q] as the objective functional. However, since
the softmax function in Eq. (9) breaks the conjugate-exponential structure in
our model, we make use of upper bound function h. The use of a bound function
in VB can be found in logistic regression [17], mixture of experts [15] and the
correlated topic model [18].

There are various choices for function h since several bounds of the softmax
function have been derived [18–21]. From here, we use the following definition of
function h, which is a quadratic form with respect to vij , wjk, by using the bound
described by Bouchard [20]. This choice yields an analytical update equation that
is easy to implement.

log h(V ,W ,η, ξ) =
∑

j,k
−n·jkwjk +

∑
ij
−ni·jγvij

−
∑

ij
nij·
{
ηij +

∑
`
f(−wj` − γvi`, ηij , ξij`)

}
,

(16)

f(x`, η, ξ`) = log(1 + eξ`) + (x` − η − ξ`)/2 + λ(ξ`){(x` − η)2 − ξ2` }, (17)
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(a) (b)

Fig. 4. (a) Graphical model. Shaded nodes indicate observed variables. Dependency
on a0 and b0 is omitted for clarity. (b) Optimization scheme of the proposed algorithm.

where λ(ξ`) = 1
2ξ`

(σ(ξ`) − 1/2) and σ(·) is a sigmoid function. The dot index

means that the corresponding index is summed out: n·jk =
∑
i nijk, ni·k =∑

j nijk, nij· =
∑
k nijk. We can easily confirm that this h is a lower bound of

likelihood P (D|V ,W ) by the following theorem.

Theorem 2 (Bouchard) [20] For any x ∈ RL, any η ∈ R and any ξ ∈ [0,∞)L,

the following inequality holds: log
(∑L

`=1 e
x`

)
≤ η +

∑L
`=1 f(x`, η, ξ`).

We construct an algorithm that iteratively updates the variational distri-
bution q and auxiliary variables ξ,η. Algorithm 1 summarizes the parameter
estimation procedure. Parameter update is explained as follows.

Update of Variational Distribution q:
With the variational method, the optimal variational distribution must satisfy
the following optimal equation:

q(V ) ∝ exp
(
Eq(W )q(α) [log h(V ,W ,η, ξ)p(V |α)]

)
, (18)

q(W ) ∝ exp
(
Eq(V )q(β) [log h(V ,W ,η, ξ)p(W |β)]

)
, (19)

q(α) ∝ exp
(
Eq(V ) [log p(V |α)p(α)]

)
, (20)

q(β) ∝ exp
(
Eq(W ) [log p(W |β)p(β)]

)
. (21)

The above distributions are given by elementwise Gaussian distribution q(vij) =
N (vij |µvij , (σvij)2), q(wjk) = N (wjk|µwjk, (σwjk)2) and gamma distributions q(α) =

G(α|aα, bα), q(β) = G(β|aβ , bβ), where µvij , σ
v
ij , µ

w
jk, σ

w
jk, aα, bα, aβ , bβ are varia-

tional parameters.

µvij =
[
−ni·j +

∑
k∈Ωto

j

{nik·
2
− 2nik·λ(ξikj)(w̄kj + ηik)

}]
γ(σvij)

2, (22)

σvij =
{
ᾱ+

∑
k∈Ωto

j

2nik·λ(ξikj)γ
2}− 1

2 , (23)

µwjk =
[
−n·jk +

n·j·
2

+
∑

i
2nij·λ(ξijk)(−γv̄ik − ηij)

]
(σwjk)2, (24)

σwjk =
{
β̄ +

∑
i
2nij·λ(ξijk)

}− 1
2 , (25)

aα = a0 +
IS

2
, bα = b0 +

1

2

∑
ij
Eq(V )[v

2
ij ]. (26)
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Algorithm 1 Proposed VB Algorithm for gIRL

input D: observed transitions, γ: discount factor
output µvij , σ

v
ij , µ

w
jk, σ

w
jk, aα, bα, aβ , bβ : variational parameters.

1: Initialization.
2: repeat
3: //parameters for variational distribution q
4: Update µvij , σ

v
ij following Eq. (22)(23).

5: Update µwjk, σ
w
jk following Eq. (24)(25).

6: Update aα, bα, aβ , bβ following Eq. (26)(27).
7: //auxiliary variables ξ,η
8: Update ξij`, ηij following Eq. (29)(30).
9: until converge

aβ = a0 +

∑
j |Ω

fr
j |

2
, bβ = b0 +

1

2

∑
j

∑
k∈Ωfr

j

Eq(W )[w
2
jk]. (27)

Note that Ωto
j denotes a set of states that can reach “to” state j by a one-step

transition and some statistics are given by the following equations: v̄ij = µvij ,

w̄jk = µwjk, ᾱ = aα/bα, β̄ = aβ/bβ , Eq(V )[v
2
ij ] = (σvij)

2 + (µvij)
2, Eq(W )[w

2
jk] =

(σwjk)2 + (µwjk)2.
The proposed algorithm works by iteratively updating the variational pa-

rameters. Note that the objective functional is monotonically decreased by the
updates and thus converges to a local minimum.

Update of Auxiliary Parameter η, ξ:
Since only the term log h(V ,W ,η, ξ) depends on ξ in the objective functional
Eq.(14), at the optimal point, its partial derivative must satisfy

∂

∂ξij`
Eq(V )q(W )q(α)q(β)

[
− log h(V ,W ,η, ξ)

]
= 0

⇔ (σwj`)
2 + γ2(σvi`)

2 + (−w̄j` − γv̄i` − ηij)2 − ξ2ij` = 0.

(28)

Therefore, we develop the following update rule:

(ξnewij` )2 ← (σwj`)
2 + γ2(σvi`)

2 + (−w̄j` − γv̄i` − ηij)2. (29)

Similarly, the update rule for η is given by

ηnewij ←
{1

2

( |Ωfr
j |

2
− 1
)

+
∑
`∈Ωfr

j

λ(ξij`)(−w̄j` − γv̄i`)
}/{∑

`∈Ωfr
j

λ(ξij`)
}
. (30)

In the process of parameter estimation, state cost function R need not be
considered. However, if necessary, using optimal equation (7), the estimated

function R̂ = {r̂ij} is obtained as r̂ij = v̄ij + log
(∑

k exp(−w̄jk − γv̄ik)
)

after
parameter estimation. Then, the estimated value function is the optimal value
function of the LMDP with the above estimated state cost function.
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(a) Grid world (b) Yokohama

Fig. 5. Settings for (a) grid world where uniform passive transition probability and
four types of state cost functions are set and (b) yokohama using real car probe data

6 Numerical Experiment

6.1 Experimental Settings

This section confirms the validity of the proposed method. We conduct a numeri-
cal experiment to determine (i) convergence property, (ii) predictive performance
and (iii) parameter visualization.

Data Description: We prepare two experiment settings: grid-world and
yokohama. In the grid-world experiment, we set the passive transition probabil-
ity of each state (vertical and horizontal) at a uniform probability (if walls or
obstacles exist, self-transition is to be considered) and prepared four different
types of state cost functions: R1,R2,R3 and R4. The cost of each function is set
at 0 just for the corresponding goal state shown in Fig. 5 (a) and at 1 for the other
states. By computing the true optimal transition probability of each LMDP, we
generate training and test data in an iid manner in each state. In the yokohama
experiment, we use real car probe data provided by NAVITIME JAPAN Co, Ltd.
This dataset is a collection of GPS trajectories of users who used a car navigation
application on smartphones in Kanagawa Prefecture, Japan. In particular, we
used the trajectories for the Minato-Mirai-21 district in Yokohama. We use the
log data recorded during the holiday period from 2015.4.13 to 2015.5.1 (5 days
in total) as training data and the log data of 2015.5.2 as test data. By applying
a landmark graph construction algorithm [22], we construct the abstract street
network as shown in Fig. 5 (b). We convert the GPS into transition data between
the nodes (states) of this graph. We treat the logs of 10:00-12:59, 14:00-16:59,
17:00-19:59 as the logs of LMDP1, 2 and 3, respectively.

Predictive Performance Measurement: To evaluate the predictive per-
formance, we use the negative test log likelihood. A lower value indicates that the
method extracts the parameter that reflects the agent’s behavior more precisely.
The negative test log likelihood is defined as (1/T )

∑I
i=1

∑
j,k∈S −ntestijk log p̂∗ijk,

where T is the number of test datasets and ntestijk indicates the number of tran-
sitions from state j to state k in the i-th LMDP. p̂∗ijk is computed by substitut-
ing v̄ij and w̄kj into Eq. (8). We compare the proposed method with Random
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(a) Objective function (b) Hyperparameters

Fig. 6. Convergence behavior of (a) objective function and (b) hyperparameters in
grid world experiment with nij· = 5. (a) shows the result of 10 random initialization
settings and (b) shows one of the paths from the initial point.

(a) Grid world (b) Yokohama

Fig. 7. Comparison of predictive performance of (a) grid world and of (b) yokohama
experiment. Lower values are better.

and Dvijotham’s method [6]. Since Dvijotham’s method can estimate only the
cost function, we set the passive transition probability at a uniform probability.
Moreover, to investigate the effect of passive transition probability estimation,
we also make a comparison with the proposed method, which does not learn the
passive transition probability (fixed at a random initial value).

6.2 Results

Convergence Behavior: Figure 6 shows the convergence behavior of the ob-
jective function and hyperparameters. We can confirm that they both converge
to certain values by iterating the update process. This shows that the proposed
method can estimate hyperparameters. In terms of convergence speed, Fig. 6 (a)
shows that the objective function basically converges within 50 iterations. In
contrast, Fig. 6 (b) shows that more than 200 iterations are needed for hyperpa-
rameter convergence. These results imply that a relatively longer running time
is required in order to learn the hyperparameters.

Predictive Performance: Figure 7 (a) shows the predictive performance
in the grid world experiment. In comparison with the proposed method without
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(a) Grid world (b) Yokohama

Fig. 8. (a) True and estimated value functions of LMDP 1,2 and passive transition
probabilities for states 1∼10 of grid world for various numbers of observed transitions
nij· = 5, 10, 20. (b) Estimated value function of LMDP1 of yokohama. Value functions
are visualized by a heat map with colors ranging from red to blue.

learning the passive transition probability, the proposed method shows better
predictive performance. This result shows that estimating the passive transition
probability contributes to better performance. Figure 7 (b) shows the predictive
performance in the yokohama experiment. Dvijotham’s method is competitive
with the proposed method that does not learn the passive transition probability
but the proposed method outperforms them. This also confirms the effectiveness
of the proposed method.

Parameter Visualization: Figure 8(a) shows the estimated parameters in
the grid world experiment for various numbers of observed transitions nij· (vi-
sualization of LMDP-3 and 4 is omitted due to lack of space). We can confirm
that as the number of observed transitions increases, the estimated parameters
more closely approach the true parameters. Figure 8(b) shows the estimated
parameters of the yokohama experiment4. Although we are unable to know the
true parameters behind the real car probe data, we observe that the state near
attractive locations has a lower value function value. We can predict that the
agent (car driver) tends to move to the locations. This result implies that the
proposed method estimates parameters that reflect car drivers’ behavior.

7 Conclusion and Future Work

In this paper, we tackled the gIRL problem to estimate both the state cost
function and transition probability from the observed optimal behavior of agents.
We showed that gIRL with an LMDP suffers from a non-identifiable problem
and, in response, we proposed a variational Bayesian gIRL algorithm with SP-
LMDPs. The result of our experiment shows the effectiveness of the proposed

4 This figure is drawn by QGIS using the data interpolation plugin.
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method. Since the application area of our method is not limited to traffic data,
we plan a further investigation into practical applications. We also consider that
analyzing the theoretical performance constitutes important future research.
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4. Neu, G., Szepesvári, C.: Training parsers by inverse reinforcement learning. Ma-
chine learning 77(2-3), 303–337 (2009)

5. Todorov, E.: Linearly-solvable markov decision problems. In: NIPS. pp. 1369–1376
(2006)

6. Dvijotham, K., Todorov, E.: Inverse optimal control with linearly-solvable MDPs.
In: ICML. pp. 335–342 (2010)

7. Ng, A.Y., Russell, S.: Algorithms for inverse reinforcement learning. In: ICML. pp.
663–670 (2000)

8. Makino, T., Takeuchi, J.: Apprenticeship learning for model parameters of partially
observable environments. In: ICML. pp. 1495–1502 (2012)

9. Ramachandran, D., Amir, E.: Bayesian inverse reinforcement learning. In: IJCAI.
pp. 2586–2591 (2007)

10. Rothkopf, C.A., Dimitrakakis, C.: Preference elicitation and inverse reinforcement
learning. In: ECML PKDD. pp. 34–48 (2011)

11. Lazaric, A., Ghavamzadeh, M.: Bayesian multi-task reinforcement learning. In:
ICML. pp. 599–606 (2010)

12. Babes, M., Marivate, V., Subramanian, K., Littman, M.L.: Apprenticeship learning
about multiple intentions. In: ICML. pp. 897–904 (2011)

13. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming (Wiley Series in Probability and Statistics) (2005)

14. Van der Vaart, A.W.: Asymptotic statistics. Cambridge University Press (2000)
15. Bishop, C.M., Svenskn, M.: Bayesian hierarchical mixtures of experts. In: UAI. pp.

57–64 (2002)
16. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to vari-

ational methods for graphical models. Machine learning 37(2), 183–233 (1999)
17. Jaakkola, T., Jordan, M.I.: A variational approach to Bayesian logistic regression

models and their extensions. In: AISTATS (1997)
18. Blei, D.M., Lafferty, J.D.: A correlated topic model of science. The Annals of

Applied Statistics pp. 17–35 (2007)
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