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Abstract. What will be the power consumption of our institution at
8am for the upcoming days? What will happen to the power consump-
tion of a small factory, if it wants to double (or half) its production?
Technologies associated with the smart electrical grid are needed. Cen-
tral to this process are algorithms that accurately model electrical load
behavior, and forecast future electric power demand. However, existing
power load models fail to accurately represent electrical load behavior in
the grid. In this paper, we propose PowerCast, a novel domain-aware
approach for forecasting the electrical power demand, by carefully incor-
porating domain knowledge. Our contributions are as follows: 1. Infusion
of domain expert knowledge: We represent the time sequences using
an equivalent circuit model, the “BIG” model, which allows for an intu-
itive interpretation of the power load, as the BIG model is derived from
physics-based first principles. 2. Forecasting of the power load: Our
PowerCast uses the BIG model, and provides (a) accurate prediction in
multi-step-ahead forecasting, and (b) extrapolations, under what-if sce-
narios, such as variation in the demand (say, due to increase in the count
of people on campus, or a decision to half the production in our factory
etc.) 3. Anomaly detection: PowerCast can spot and, even explain,
anomalies in the given time sequences. The experimental results based
on two real world datasets of up to three weeks duration, demonstrate
that PowerCast is able to forecast several steps ahead, with 59% error
reduction, compared to the competitors. Moreover, it is fast, and scales
linearly with the duration of the sequences.

1 Introduction

The goal of the smart electrical grid is to manage the demand and supply of
electricity while maintaining both efficiency and reliability. Indeed, [1] finds that
improving the reliability of the U.S. grid could provide savings of around $49
billion per year and provide a 12% to 18% reduction in emissions, while improv-
ing efficiency could save an additional $20 billion. Toward this goal, monitoring
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(a) (b)

Fig. 1: PowerCast forecasts accurately. (a) PowerCast (red) and
PowerCast-S (pink) forecasts 24 steps (1-day) on Ir (top row), and Ii (bottom
row) more accurately compared to competitors (AR: blue; SAR: green; ground
truth black circles). (b) RMSE comparison of the methods

systems have been put in place, including Phasor Measurement Units (PMUs)
and newer high-precision micro-PMUs [34]. Using these data sources to accu-
rately model load behavior in the grid, as well as to forecast future power load,
is important in protecting the grid from failure and for maintaining reliability.

Our main goal is to understand how a specific service area consumes power
(a university campus, a small factory, a village or neighborhood), by studying
its past behavior. Once we have a good model for the power-consumption be-
havior, then we can do forecasting (how much power will our campus/factory
need tomorrow), spot anomalies (when our forecast is too far from what actually
happened), and answer “what-if” scenarios, like how much power will we need,
during spring-break on campus; or during a heat-wave, in our neighborhood.

We focus on these two problems: forecasting, and ’what-if’ scenarios. The
informal definitions, are as follows. Note that alternating current (AC) (I) and
voltage (V ) are modeled as complex numbers.

Informal Problem 1 (Multi-step forecasting on power grid)

– Given: real and imaginary current (Ir(t), Ii(t)) and voltage (Vr(t), Vi(t)) of
previous N time points (t = 1, · · · , N),

– Forecast: the electric current demand, for Nf steps in the future (i.e.,
guess Ir(t), Ii(t), for t = N + 1, · · · , N +Nf )
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Throughout this work, we assume that the voltage in the future, is given
(Vr(t), Vi(t) for t = N + 1, · · · , N +Nf ). This is realistic: except for rare brown-
outs, power-plants try hard to provide near-constant voltage to consumers.

In Figure 1, 24 step (1-day) forecasting result on Lawrence Berkeley National
Laboratory (LBNL) Open µPMU project data [34] is shown. In (a), PowerCast
(red) and PowerCast-S (pink) provides more accurate forecasting, following
closely to the truth (black dots) while the competitors (AR: blue, SAR:green)
fail. We observe that PowerCast is able to forecast the the current demand
with an accurate daily pattern while AR and SAR fail to consider the daily
pattern. In (b), a quantitative comparison on the forecasting accuracy is shown.
PowerCast forecasts with 59% reduction in error, compared to the competi-
tors.

An additional benefit of our domain-aware approach is that it can handle the
what-if extrapolation problem:

Informal Problem 2 (’what-if ’ extrapolation)

– Given the historical data, as above (real and imaginary current Ir(t), Ii(t),
and voltage Vr(t), Vi(t), t = 1, . . . , N

– Guess what will be the power demand in the future (currents Ir(t), Ii(t),
t > N), if, say, the student population doubles on our campus (or our factory
cuts production in half, etc).

Handling what-if scenarios is beyond the reach of black-box methods (ARIMA
etc), exactly because it demands domain knowledge, which we carefully infuse,
using the established “BIG” model.

Our contributions are as follows:

1. Infusion of domain knowledge: Our method is domain-aware: among
the many aggregated load models (BIG, “PQ”, “ZIP”), we chose the first,
because it allows for an accurate and intuitive interpretation of the power
load, being derived from physics-based first principles.

2. Forecasting/What-if : The proposed PowerCast (a) leads to more ac-
curate forecasts (up to 59% lower error) compared to textbook, black-box
methods, and (b) it can answer what-if scenarios that black-box methods
can not.

3. Anomaly detection: PowerCast can spot, and even explain, anomalies
in the given time sequences. (see section 4.3, Figure 6)

Reproducibility: Our code is open-sourced at: www.cs.cmu.edu/~hyunahs/
code/PowerCast.zip; the LBNL dataset is at: powerdata.lbl.gov/.

The structure of the paper is typical: We give the background and related
works (section 2), our proposed method (section 3), experiments (section 4), and
conclusions (section 5).
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2 Background and Related Work

2.1 Related works

Load model for aggregated electrical demand: the BIG model Electrical
load modeling for power system analysis has been traditionally done using the
constant power constant PQ and ZIP models [28]. However, industry experience
has shown that these models incorrectly characterize load behavior [22]. Recent
advances in steady-state power system simulations [6, 27] have introduced the
use of physics based state variables, i.e. currents and voltages, and shown that
load behavior at a given time instance can be accurately described by a linear
relationship between current and voltage. From circuit theory, this can be rep-
resented by a parallel or series combination of reactance (B) and conductance
(G). This model captures both voltage magnitude and angle information, in con-
trast to existing traditional load models [28]. Further adding a current source
(I ) results in the BIG load model, which accurately captures load sensitivities
to voltage variations over a period of time [13]. The complete description of the
BIG load model is given in section 3.

Table 1: PowerCast captures all of the listed properties. AR++ =
ARIMA, seasonal ARIMA etc. LDS = Linear Dynamical Systems. ‘Pattern dis-
covery ’ = concept / latent-variable discovery.
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Pattern (=concept) discovery ! ! ! "

Forecasting ! ! ! "

Seasonal patterns ! ! "

Domain knowledge inclusion "

What-if scenarios "

Time series forecasting Classical methods for time-series forecasting include
the family of autoregression (AR)-based methods, including ARMA, exponen-
tial smoothing [7], ARIMA [5], ARMAX [39] and ARFIMA [4] models. Seasonal
ARIMA [5] incorporates pre-determined, constant periods allowing the model to
capture seasonal patterns. More recent generalizations include TBATS [9] which
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allows for more complex seasonality patterns. Other methods for time series fore-
casting include Kalman filtering [15], Linear Dynamical Systems (LDS) [12], Hid-
den Markov Models (HMMs) [19], wavelet-based methods such as AWSOM [29]
and non-linear dynamical systems such as RegimeCast [23].

In the area of modeling of aggregated load in the power grid, autoregression is
an extremely common approach due to its simplicity and interpretability [32, 33,
8, 11]. [30] uses ARMA models and exponential smoothing for short-term load
forecasting. [26] uses a two-step procedure of seasonality removal, followed by
ARMA with hyperbolic noise.

Tensor-based time series analysis Tensor decomposition methods, including
PARAFAC decomposition, Tucker decomposition [17, 18], multilinear principal
components analysis [21], and Bayesian tensor analysis [36] are powerful tools
to understand latent factors of a target dataset. Recent work such as Marble
[10] and Rubik [38] applies tensor factorization for concept analysis with do-
main knowledge. In terms of time series applications, tensors have been used
for modeling multiple coevolving time series for epidemiology [25], community
discovery [20], and concept discovery [16]. [24] uses a tensor-based approach for
forecasting based on complex sequences of timestamped events. AutoCyclone [35]
models seasonality in tensor datasets by ‘folding’ the data into a higher-order
tensor.

However, all of the aforementioned methods are typically not based on elec-
trical load models derived from first principles, as is the case for the BIG load
model, which the herein proposed method is based on, thus allowing for more
accurate forecasts and interpretable models. In addition, our approach allows
for what-if scenarios, e.g. variation of electrical load due to change in number of
people in the building.

2.2 Background

BIG model The BIG equivalent circuit model [14] is a linear representation
of the current using the voltage data follows:

Ir(t) = G(t)Vr(t)−B(t)Vi(t) + αr(t) (1)

Ii(t) = B(t)Vr(t) +G(t)Vi(t) + αi(t) (2)

By modeling the given time sequences Ir, Ii, Vr, Vi using the BIG model, we learn
the BIG parameters G,B, αr, αi that provides us with an intuitive interpretation
of the aggregated conductance (G) and susceptance (B) of the power grid as
it varies over time. In PowerCast, we convert the given time sequences to
the BIG domain (G,B, αr, αi) and further proceed with pattern analysis and
forecasting. As we will demonstrate in our analysis with experimental results in
section 4, working in the BIG domain provides more stable and interpretable
analysis of the power systems: understanding the power system (section 4.1),
accurate forecasting and exploration of various what-if scenarios (section 4.2),
and anomaly detection (section 4.3).
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3 Proposed Method

In this work, our interest is in: 1) including the domain knowledge of the intrinsic
behavior of the campus (G,B), 2) capture the latent periodic patterns in the
sequences, and 3) do forecasting.

The core parts of PowerCast algorithm is: 1) to convert the given time
sequences into the BIG domain, and 2) forecasting in tensor structure. By con-
verting the time sequences into the BIG domain, we try to understand the power
system (G,B value range, dynamics, ratio, etc) that generated the sequences
Ir, Ii, Vr, Vi that we observe, which enables us to do forecasting under what-if
scenarios of change in the power systems on campus. Working with tensors tells
us the long-term, and daily patterns. By performing forecasting based on the
learned patterns from the past, PowerCast provides more stable forecasting
result (section 4.2). In this section, we will explain how we convert the time
sequences into the BIG domain and how we analyze tensors to do forecasting in
more details.

A table of symbols that is used throughout this paper is shown in Table 2.

Table 2: Symbols and definitions
Symbols Definitions

Ir, Ii, Vr, Vi given time sequences. Real and imaginary part of complex current and voltage.
N total number of timeticks in the given time sequences. N = Nd ×Ndt

Nd number of days in the given time sequences
Ndt number of time points for each day
G,B, αr, αi BIG parameters. (conductance, susceptance, offset to Ir and Ii)
X a tensor of given time sequences Ir,Ii,Vr,Vi. X ∈ RNd×Ndt×4

Ba a tensor of BIG parameters G,B, αr, αi. Ba ∈ RNd×Ndt×4

Bb a tensor of BIG parameters G,B, αr, αi, after extension. Bb ∈
R(Nd+Nfd)×Ndt×4

Nfd number of days for forecasting
Nf number of time steps for forecasting. Nf = Nfd ×Ndt

Par auto-regression parameter
R rank for tensor decomposition
Nw, σ Parameters for Gaussian filter. (window size, standard deviation of Gaussian)

3.1 PowerCast algorithm

Pseudocode of PowerCast is described in Algorithm 1, where each function
will be explained in more detail. In Figure 2, a flowchart of the Algorithm 1 is
illustrated.

Step 1: Seq2Tensor (Tensor construction): Given four time sequences
Ir(1 : N), Ii(1 : N), Vr(1 : N), Vi(1 : N), we construct a tensor X ∈ RNd×Ndt×4
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Algorithm 1: PowerCast.

Data: Ir(1 : N), Ii(1 : N), Vr(1 : N +Nf ), Vi(1 : N +Nf )
Result: Îr(N + 1 : N +Nf ), Îi(N + 1 : N +Nf )
Construct a tensor from given sequences:;
[X ] = Seq2Tensor(Ir(1 : N), Ii(1 : N), Vr(1 : N), Vi(1 : N)) ;
Covert the data to BIG domain (fit the data to BIG model):;
[Ba] = X2B(X );
Extend the tensor for forecasting:;
[Bb] = Bextension(Ba);
Recover the data from BIG domain:;

[Îr(N + 1 : N +Nf ), Îi(N + 1 : N +Nf )] =
B2Seq(Bb, Vr(N + 1 : N +Nf ), Vi(N + 1 : N +Nf ));

Fig. 2: Flowchart of PowerCast.

by cutting the sequences into daily unit as described in Figure 2 “Seq2Tensor.”
The first, second, and third mode of the tensor corresponds to days, hour of the
day, and given time sequences, respectively. For example, if the time sequences
are hourly samples (24 points per day) for 7 days, then the dimensions of the
first and second modes become 7 (days) and 24 (samples per day) respectively.
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Step 2: X2B (Convert the data into BIG domain): Then we convert
the data tensor (X ) to BIG domain (Ba) by fitting the data to BIG model as
described in “X2B” in Figure 2. For fitting the BIG parameters, as we cannot
fit the BIG parameters to a single point, we consider multiple points before and
after the current timetick by apply a moving Gaussian filter to a window size of
Nw, standard deviation σ to the data.

Function fitBIG takes in [Iinr , Iini , V in
r , V in

i ] and fits the BIG models in equa-
tions (1) and (2) to the given window of data, using weighted least squares fit-
ting, using this Gaussian filter as weights. Then we construct a new tensor Ba
consisting of BIG parameters.

We next combine these fitted values into a tensor in the BIG domain whose
first, second, and third mode of the tensor corresponds to days, hour of the day,
and BIG parameters, respectively.

Step 3: Bextension (Extend the tensor for forecasting): After con-
structing a tensor from the given data in the BIG domain, we decompose the
tensor using canonical polyadic alternating least squares (CP ALS) algorithm

[17, 18]: Ba =
∑R

r=1 λr × ur × vr ×wr. Here, u,v,w corresponds to the hidden
variables across multiple days, within a day, and among the BIG parameters.
We will refer to these hidden variables as long-term-concepts, daily-concepts,
users-profile-concepts, respectively.

After learning the tensor components, we extend the first mode of the tensor
(u, corresponding to days) for Nfd more points for forecasting - we conduct auto-
regression on the u vector and forecast/extend it. We learn the AR parameters
for P th

ar order auto-regression AR(Par) using least squares on u. Then we use
AR parameters for the extension of the u vector to get an extended vector û:
ûr(Nd + f) = c0 +

∑Par

p=1 cpûr(Nd + f − p)
From the extended components û, we can reconstruct an extended tensor,

Bb =
∑R

r=1 λr × ûr × vr × wr with next Nfd days worth of data. A detailed
steps are illustrated in Figure 2 “Bextension” part.

Step 4: B2Seq (Recover the data from BIG domain): Now that we
have a extended tensor Bb on BIG domain, we need to recover the Nfd days of
forecast data back into the original data domain. A detailed description of steps
is illustrated in Figure 2 “B2Seq” part. We matricize the tensor into four matrices
and reshape each matrix into a vector in row-wise manner. We apply the BIG
equations (1), and (2) to the assumed voltage data and forecast corresponding
Ir(t), Ii(t) for the next t = N + 1, · · · , N +Nf steps.

3.2 PowerCast-S

PowerCast-S is a variation of PowerCast. In function Bextension, we can
use any type of forecasting function in exchange of AR.

We tried applying seasonal periodicity on the long-term-concepts (u vector),
but on our dataset (which does not span over long enough period of time to
capture the seasonal pattern) PowerCast-S did not work well. Thus we rec-
ommend users to use plain PowerCast unless: 1) you have a long enough
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history of the time sequences to capture the weekly pattern, and 2) you strongly
believe that there is a seasonality in the data (weekly, monthly, seasonal, etc).

4 Experiments

In this section we conduct experiments on the real world data to answer the
following research questions: Q1: Interpretability, Q2: Forecasting, and Q3:
Anomaly detection.

Dataset description: We next give a brief explanation of the datasets we used
for experiments. All datasets are 5-tuples of the form (Vr, Vi, Ir, Ii, t).
– CMU data: The voltage and current measurements were recorded for the

Carnegie Mellon University (CMU) campus for 23 days, from July 29, 2016
to August 20, 2016. The time sequences were sampled every hour (Ndt = 24).

– LBNL data: This is from the Lawrence Berkeley National Laboratory
(LBNL) Open µPMU project4 [34]. It spans 3 months, with sampling rate
of 120Hz; but we used only the interval (October 1, 2015 to October 8,
2015) and we down-sampled it to hourly samples (Ndt = 24). Moreover, we
de-noised it using moving averages.

Experimental setup: For the parameters, we used Par = 1 for AR(Par) for exten-
sion of the u vector, R = 2 for the tensor decomposition, and Nw = 5, σ = 0.5
for the moving Gaussian filter. We used tensor tool box from [3] [2].

Baseline methods: As baseline methods, we conducted experiments using auto-
regression (AR) and seasonal auto-regression (SAR) for comparison with our
PowerCast. For the baseline experiments, we assume that we do not have
the domain knowledge on the power systems such as BIG model, etc. Thus we
run AR and SAR methods on the given time sequences of Ir, Ii directly. The
autoregression order for AR and SAR are determined via AIC criterion.

4.1 Q1: Interpretability

In this section we analyze the hidden variables in CMU data, and interpret the
result using our domain knowledge.

As a reminder, G can be interpreted as a component of electrical load that
contributes to real power consumption (for e.g. light bulbs), while B can be
interpreted as a component of electric load that contributes to reactive power
(for e.g. lagging reactive power (+Q) is absorbed by the motors where leading
reactive power (-Q) is supplied by the capacitor) In our analysis below, we include
images of “light bulbs” and “motors” to represent one example of the sources of
G and B for more intuitive understanding.

Observations 1 (Weekly pattern in Figure 3 (a))

4 http://powerdata.lbl.gov/
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(a) long-term-concepts (b) daily-concepts (c) users-profile-concepts

Fig. 3: (a) Weekly periodicity in long-term-concepts (u), (b) Daily pattern
in daily-concepts (v), (c) users-profile-concepts (w), on CMU data

– The long-term-concepts (u vector) shows weekly periodicity accounting for
the activities across the days (drops during weekends)

– Both of the two components capture similar weekly pattern

Observations 2 (Daily pattern in Figure 3 (b))

– The daily-concepts (v vector) captures daily activity patterns throughout
the day, lowest during the night (midnight to 9am), and grows from 9am,
when peaking start coming to campus, peaking at 4pm.

– The first component, v1, shows smoother varying pattern throughout the
day. We can think of this component as the representation of the“background”
activities, as it is insensitive to the dynamics of the human activities through-
out the day.

– The second component, v2, shows more dynamic changes with 1) deeper
drop during the night, 2) faster growth in early stage (logarithmic), and
3) rapid decay after the peak. This pattern closely follows the dynamics
of the expected human activities throughout the day. We can think of this
component as the representation of the “human-activity” factor.

Observations 3 (G and B factor analysis in Figure 3 (c))

– The users-profile-concepts (w vector) explains how much G and B account
for each of the component.

– The first component - hidden variable (left of Figure 3(a)) accounts for both
G (e.g“light bulbs”) and B (e.g.“motors”) in a close to 50-50 ratio. Combined
with our interpretation in the daily-concepts for plot (b), we can interpret
the first component as the background component that explains the back-
ground activities of the G and B (e.g. light bulbs and motors) factors that are
operated independently of the dynamics of the major human factors. (basic
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facilities such as air conditioning units, light bulbs, etc, that runs throughout
the day to maintain the minimum required conditions in the buildings)

– The second component (right of Figure 3(a)) accounts dominantly for G
(e.g.“light bulbs”). Aligned with our interpretation of the second component
as accounting for the “human-activity” factor, this tells us that G (e.g. light
bulbs) is more dependent on the dynamics of the daily activities compared
to B. This is reasonable since addition of one more person on campus may
result in turning on 10 G-related facilities (e.g. light bulbs) while it merely
affects B-related facilities (e.g. motors- air-conditioner, heaters, etc) that
are operated to maintain the background conditions regardless of the human
factors.

4.2 Q2: Forecasting

In this section we demonstrate forecasting results by PowerCast including
various what-if scenarios.

Multi-step forecasting We start by showing multi-step ahead forecasting by
PowerCast in comparison with other competitors on two different real world
datasets.
– CMU data: Comparisons on the forecasting by PowerCast and competi-

tors are shown for Nf = 24 steps (Nfd = 1-day) (Figure 4).
In (a), we observe that PowerCast and PowerCast-S are able to demon-
strate the daily periodic pattern while competitors fails to correctly demon-
strate daily periodicity. In (b), a quantitative comparison is given by root
mean square error (RMSE) sum of Ir, Ii forecast results. The RMSE is com-

puted as follows: RMSE(x, x̂) =

√∑Nf
t=1(x(t)−x̂(t))2)∑Nf

t=1(x(t))
2

– LBNL data:
Figure 1 shows a similar quantitative comparison on the LBNL dataset,
where PowerCast also outperforms its competitors.

What-if scenario If we know that the number of people on campus will increase
by 10% tomorrow due to a big event, how much more power do we expect? Naive
forecasting methods cannot tell us the future demand under various scenarios.

In this section, we illustrate how PowerCast can handle forecasting under
various what-if scenarios by adjusting G,B accordingly. We created three sce-
narios, assuming that we will have {10, 20, 30}% more activities on campus for
next 2 days (thus increased values for G and B); and performed forecasting of
the power demand under our scenarios. In Figure 5, 48 step (2-day) ahead fore-
casting on CMU data under our scenarios are shown for (a) real current demand
and (b) imaginary current demand. We see that Ir and Ii increase, according
to the “BIG” model (see (a) and (b) respectively), allowing us to plan ahead.
(Red, blue, green, and cyan, correspond to {0, 10, 20, 30}% increases).
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(a) (b)

Fig. 4: PowerCast forecasts 24 steps (1-day) accurately on CMU data
(a) PowerCast (red) and PowerCast-S (pink) forecasts 24 steps (Ir on the
top row, and Ii on the bottom row) more accurately compared to the competitors
(AR: blue and SAR: green). (b) RMSE comparison of the methods. PowerCast
achieves 41% error reduction.

(a) (b)

Fig. 5: PowerCast can handle forecasting under various what-if scenar-
ios on demands for (a) Ir and (b) Ii on CMU data

4.3 Q3: Anomaly detection

In Figure 6 (a) Nf = 144 step forecasting (Nfd = 6 days) on CMU data is
shown in solid red along with the actual reading in black circles. We report the
highest deviation from our PowerCast forecast, with a red vertical line. This
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(a) Anomaly detection (b) Possible Ex-
planation

Fig. 6: PowerCast spots anomalies: (a) August 16, 2017 (spotted, and marked
with red stripe) was during the new graduate student orientation. (b) Power-
Cast shows that a 10% increase in activities (’B’ and ’G’), could explain this
spike.

happened on Tuesday, August 16, which was in the middle of the 3-day new
graduate student orientation, probably ≈1,000 people.

The natural follow up question is: Was the extra population the reason for
this anomaly? The answer seems ‘no’, for two reasons: extra people would mainly
boost Ir, that is ‘G’ (e.g. “light bulbs”), as our “human-activity” component
showed in Figure 3, but we have spikes in both Ir and Ii; the second reason is
that there was no spike during the other two days of orientation.

The only explanation is that something boosted the “background” component
of Figure 3 (e.g., “motors”, like elevators, heaters, air-conditioners), resulting in
roughly equal boost to both Ir and Ii. Does reality corroborate the conjecture?
The answer is ‘yes’: the temperature on Aug. 16 spiked, to a scorching 88◦F
(≈ 30.5◦C), while the surrounding days was closer to 80◦F . This is exactly what
we show in (b): PowerCast shows that for a 10% increase in the component
“background” (air-conditioners, etc), we get a 10% increase in both G (e.g. “light
bulbs”) and B (e.g. “motors”); the resulting answers correspond to the red line
in (b), which is very close to the ground-truth black circles.

In short, PowerCast can not only spot anomalies, but also give hints about
their cause.
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4.4 Scalability

In Figure 7, the wall clock time for PowerCast to run on a dataset of different
number of timeticks (N) is plotted in black solid dots, along with a linear line
in blue. The time was measured for 24 step (1-day) forecast given past time
sequences of length N = 240−528 timeticks (Nd = 10−22 days) on CMU data.

Fig. 7: PowerCast scales linearly with respect to the number of timeticks (N)

5 Conclusions

We proposed PowerCast, a novel domain-aware method to mine, understand,
and forecast the power demand of an enterprise (university, factory, neighbor-
hood). Our contributions are as follows:
1. Infusion of domain knowledge: We carefully picked a successful electric-

power model, “BIG”, which is derived from first-principles, and allows for
intuitive interpretation of the power system of interest.

2. Forecasting/What-if : Our domain-aware approach, coupled with the BIG
model provides (a) accurate prediction in multi-step ahead forecasting with
up to 59% lower error, and (b) answers what-if scenarios, like “what will
be our power demands when 80% of our students leave campus for March-
break”

3. Anomaly detection: PowerCast can spot anomalies and explain as we
show in section 4.3, Figure 6.
Reproducibility: Our code is open-sourced at: www.cs.cmu.edu/~hyunahs/

code/PowerCast.zip, and the LBNL dataset is at: powerdata.lbl.gov
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