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Abstract. Common time series similarity measures that operate on the
full series (like Euclidean distance or Dynamic Time Warping DTW)
do not correspond well to the visual similarity as perceived by a hu-
man. Based on the interval tree of scale, we propose a multiscale Bezier
representation of time series, that supports the definition of elastic simi-
larity measures that overcome this problem. With this representation the
matching can be performed efficiently as similarity is measured segment-
wise rather than element-wise (as with DTW). We effectively restrict
the set of warping paths considered by DTW and the results do not only
correspond better to the analysts intuition but improve the accuracy in
the standard 1NN time series classification.

1 Introduction

Time series analysis almost always starts with inspecting plots. But does a vi-
sually perceived similarity correspond to the similarity determined by common
measures? We consider this as important whenever a domain expert, who has
familiarized herself with the data earlier, wants to match her own knowledge and
own expectations to the results of some data mining process or an exploratory
analysis. Prominent approaches to time series similarity do not care that much
about this correspondence and the results may thus be misinterpreted easily.

With this problem in mind, a new multiscale representation of time series
is proposed, not to compress the series in the first place, but to capture its
characteristic traits. It simplifies the definition of a notion of similarity that
corresponds to our cognition. While we will showcase its usefulness in the context
of classification, we see it as a versatile and helpful representation that enables
new and carries over to existing approaches. As an example, a new efficient elastic
similarity measure is derived directly from this representation. Although we focus
on the series as a whole here – rather than subsequences as with shapelets or bag-
of-words approaches – the representation may nevertheless be used as a starting
point for a meaningful segmentation and subpattern-based approaches.

The main contribution of this paper is a new Bezier spline-based, multiscale
time series representation, which (a) encodes many different, continuous repre-
sentations of the same series, thereby capturing many possible alternative views
and mimicking the ambiguity in human perception. (b) It directly supports (no



need to access the raw data) elastic similarity measures, which can be computed
efficiently and finally (c) performs more than competitive to DTW.

The paper is organized as follows. In the next section we briefly review some
existing time series representations and also dynamic time warping as the most
prominent elastic similarity measure. We recall the so-called Interval Tree of
Scales (IToS), which serves as a basis for the new time series representation.
Then, in Sect. 3 we identify two drawbacks shared by most elastic measures and
how we intend to use the IToS to overcome these problems. The new represen-
tation is presented in Sect. 4, including a proposal how to use it for an elastic
similarity measure. The representation is evaluated, amongst others, on time
series classification problems in Sect. 5.

2 Related Work

2.1 Similarity Measures and Time Series Representations

Similarity Measures. Given two series x and y, Euclidean distance d2(x,y) =∑
i(xi − yi)2 assumes a perfect alignment of both series as only values with the

same time index are compared. If the series are not aligned, xi might be better
compared with some ym(i) wherem : N→ N is a monotonic index mapping. With
dynamic time warping (DTW) [2] the optimal warping path m, that minimizes
the Euclidean distance of x to a warped version of y, is determined. An example
warping path m is shown in Fig. 2(left): Two series are shown along the two
axes; x on the left, y at the bottom. The matrix enclosed by both series encodes
the warping path: an index pair (i, j) on the warping path denotes that xi is
mapped to yj = ym(i). All pairs (i, j) of the warping path, starting at index pair
(0, 0) and leading to (m,m), contribute to the overall DTW distance. Despite
the fact that DTW is rather old, recent studies [14] still recommend it as the
best measure on average over a large range of datasets.

Time Series Representations. While a time series may consist of many
values (high-dimensional), consecutive values typically correlate strongly. So we
may seek for a more compact representation, such as piecewise polynomials. This
requires a segmentation of the whole series, which may be adaptive (segments
of varying length to approximate the data best) or static (subdivide the series
into equal-length segments) [14]. Symbolic approaches may replace (short seg-
ments of) numeric values by a symbol, shifting the problem into the domain
of strings (e.g. SAX [8]). Bag of words representations consider the series as a
set of substrings as in text retrieval, but do not allow a reconstruction of an
approximation of the original series as all positional information gets lost. While
most approaches focus on approximation quality, compression rate, or bounding
of the Euclidean distance, a few explicitly care about the perception of time
series. The Landmark Model focuses on the extrema of time series to define
similarity that is consistent with human intuition [11]. The extrema are also
considered as important points in [12]. With noisy data, both approaches skip
some extrema based on a priori defined thresholds. This is typical for smoothing
operations, but it is difficult to come up with such a fixed threshold, because
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Fig. 1. Left: Depending on the variance of a Gaussian smoothing filter (vertical axis,
logarithmic) the number and position of zero crossings in the first derivative varies.
Mid: The zero-crossings of the first derivative (extrema in the original series) vanish
pairwise. Right: Interval tree of scales obtained from left figure.

different degrees of smoothing may be advisable for different parts of the series.
Too much smoothing bears the danger of smearing out important features, too
little smoothing may draw off the attention from the relevant features.

Bezier curves. Time series representations usually approximate the raw
series. Polynomials are most frequently used, e.g. piecewise constant segments
[8], linear segments [9], cubic segments or splines. The polynomials are defined
as functions of time t or time series index i, such that (t, f(t)) resembles the
approximation.

Bezier curves are common in computer graphics but not in data analysis.
They are used to represent arbitrary curves in the plane and thus are not neces-
sarily functional. A Bezier curve (Bt(τ), Bq(τ)) is a τ -parameterized 2D-curve,
τ ∈ [0, 1], defined by two cubic polynomials (separately for the time and value
domain). For given coefficients c = (c0, c1, c2, c3) ∈ R4, Bc(τ) is defined as

Bc(τ) = (1− τ)3c0 + 3(1− τ)2τc1 + 3(1− τ)τ2c2 + τ3c3 (1)

2.2 Interval Tree of Scales (IToS)

The relevance of extrema has been recognized early and by many authors. Ex-
trema are, however, also introduced by noise, so we have to find means to distin-
guish extrema of different importance. Witkin was one of the first who recognized
the usefulness of a scale-space representation of time series [15]. The scale s de-
notes the degree of smoothing (std. dev. of Gaussian filter) that is applied to
the time series. The scale-space representation of a series depicts the location
of extrema (or inflection points) as the scale s increases (cf. Fig. 1(left) for the
time series shown at the bottom). An extremum can be tracked from the original
series (s ≈ 0) to the scale s at which it vanishes (where it gets smoothed away),
indicating its persistence against smoothing.

Zero-crossings vanish pairwise, three consecutive segments (e.g. increasing,
decreasing, increasing) turn into a single segment (e.g. increasing), cf. Fig.
1(middle). The scale-space representation can thus be understood as a ternary
tree of time series segments where the location of zero-crossings determine the
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Fig. 2. Behaviour of time warping distances. Left: warping path of two time series (also
shown in green and red in the middle). Mid and right: examples series; dotted lines
indicate the DTW assignment. Right: Pair of blue and red series; structurally different,
but with the same distance as green and red series.

temporal extent of the segment and the (dis-) appearance of zero-crossings limit
the (vertical) extent or lifetime of a segment. By tracing the position of an ex-
trema in the scale-space back to the position at s ≈ 0 we can compensate the
displacement caused by smoothing itself. We construct a so-called interval tree
of scales [15] (cf. Fig. 1(right)), where the lifetime of a monotonic time series
segment is represented by a box in the scale-space: its horizontal extent denotes
the position of this segment in the series, the vertical extent denotes the stability
or resistance against smoothing. The tree represents the time series at multiple
scales and allows to take different views on the same series. It can be obtained
by applying Gaussian filters or by means of the wavelet transform à trous [10].

We found the IToS already useful in a visualization technique to highlight
discriminating parts of a class of time series [13]. But all comparisons had to
be conducted directly on the raw data, which was time-consuming. Here, we
propose a new general and efficient representation that supports various notions
of elastic similarity (and also speeds up [13]). In the remainder of this work, we
refer to the elements of the tessellation (rectangles) as tiles. A tile v covers a
temporal range [tv1, t

v
2] (tv1 < tv2) and a scale range [sv1, s

v
2] (sv1 < sv2) and has an

orientation o ∈ {increasing,decreasing}. By x|v we denote the segment x|[tv1 ,tv2 ]
from the original series x covered by tile v.

3 Visual Perception of Series – Problems and Motivation

We want to draw the reader’s attention to two problems with measures of
the DTW-kind, the most prominent representative of elastic measures. In Fig.
2(middle) we have two similar series (linearly decreasing, incr., decr. segments),
depicted in red and green. Both series are also shown on the x- and y-axis in the
leftmost figure, together with the warping path. How the warping maps points
of both series is also indicated in the middle by dotted lines. All series were
standardized, which is common practice in the literature.



Problems of existing elastic approaches. First, elastic time series simi-
larity measures treat value and time differently: while a monotone but otherwise
arbitrary transformation of time is allowed (with DTW), the values are usually
not adapted to the comparison but are transformed a priori and uniformly (via
standardization). But once we warp a time series locally, this also affects the
value distribution and thus mean and variance: The local maximum of the red
curve is mapped to many points of the green curve (cf. dotted assignment), so
its local maximum occurs more often in the warped path than in the original
red series. The initial mean and variance do not have much in common with the
mean and variance of the warped curve, so why use the a priori values anyway?

Second, elastic measures allow almost arbitrary (monotonic) warping, which
may lead to some surprising results. If we would ask a human to align the red
and green series in Fig. 2, an alignment of the local extrema would be natural,
revealing the high similarity of both series as they behave identically between the
local extrema. The local maximum m of the red curve (near t = 60), however,
lies below the local maximum of the green curve, so all DTW approaches assign
the red maximum to all points of the green curve above m. As a consequence,
if we shuffle or reorder the green data above m (cf. rightmost subfigure, blue
curve), neither the assignment nor the distance changes. This is in contrast to
the human perception, we would never consider the blue series being as similar
to the red series as the green.

Envisaged use of the IToS. So we focus on two problems: (1) emphasis
of local temporal scaling but ignorance of local vertical scaling, (2) arbitrary
warping paths instead of warping that matches landmarks.

Regarding (2) we propose to utilize the IToS as a regularizer. We consider
the IToS as a representation of all possible perceptions of a time series. Taking a
finer or coarser look at some part of the series corresponds to selecting different
tiles within the same time range but at different scales. Consider for example
Fig. 3(right): If we intentionally ignore some fine-grained details of the series in
the gray box we perceive it only as a single decreasing segment. By choosing
tiles (from the IToS below the series) at different scales (b4 rather than b3b5b6)
we adjust the level of detail and either ignore or consider local extrema. Any
sequence of tiles (adjacent in time and covering the whole series) corresponds to
a different perception of the series. Instead of allowing an arbitrary (monotonic)
assignment of data points as with DTW, we propose to assign tiles to each
other. In case of Fig. 3 we may choose perception a0, a1, a2, a4 for the left and
b1, b4, b7, b8 for the right series and match them accordingly (a0 : b1, a1 : b4, . . .).

Regarding (1) we propose to apply linear scaling to the temporal domain
and the value domain. Continuing our example, we may match (decreasing)
tiles a1 and b4. We align both start times and linearly rescale time to match the
temporal extent of both tiles. This is justified by the observations of different
authors [5,6,7] that arbitrary warping is seldomly justified but linear warping
suffices. In the same fashion we align the starting values and linearly rescale
the vertical axis (replacing standardization) to have the same value range as
illustrated at the bottom of Fig. 3. Once this alignment has taken place, we may
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Fig. 3. The IToS for two time series. One possible perception of each time series is
marked by circles. Matching time series is then accomplished by matching adjacent
tiles subsequently.

measure the Euclidean distance between both series. This procedure limits the
warping capabilities to perceptually meaningful paths and focuses on the shape
of the tiles rather than (questionable) standardized absolute values. In contrast
to other landmark approaches we want to keep the ambiguity in the perception
of a time series by sticking to the multiscale representation.

4 A New Time Series Representation

The IToS just captures the temporal and vertical extent of monotone segments.
In this section, we extend the IToS such that it fully represents the underlying
series. The goal is to have all information readily available to measure similarity.

4.1 Multiscale Bezier-Representation of Time Series

We propose to attach a compact representation of an appropriately smoothed
time series to each tile. This is shown in Fig. 4 for one series from the Beef
dataset. At the top, the IToS is depicted. The light blue and red colors indicate
increasing and decreasing segments. At the bottom, the original time series is
shown, but this is hardly recognizable because for each tile from the IToS above
we show an approximation of the corresponding segment (each in different color).
Note that the segments connect seamlessly: for any sequence of adjacent tiles in
the IToS we find a corresponding, smooth representation of the time series (a
possible perception of the series, cf. Sect. 3).

To achieve such a representation we cannot simply apply standard curve fit-
ting to x|v, because that would ignore our background knowledge: By definition
the tile boundaries mark local extrema of the series, so each segment has to
be monotonic. From this alone a polynomial of degree 3 is uniquely determined
(cf. [11]). However, one can actually think of many different shapes for an in-
creasing segment, with a uniquely determined polynomial we would not be able
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Fig. 4. Interval Tree of Scales for one series from the Beef dataset together with Bezier
spline approximations.

to distinguish different shapes like those in Fig. 5 from one another. To better
adapt to the data, we settle on Bezier curves, which are widely used in computer
graphics. A Bezier curve (of degree 3) allows us to define a polynomial for both
dimensions, the value domain as well as the time domain, which gives us the
desired flexibility to adapt the approximations to the data as shown in Fig. 5.

These constraints are a strong regularizer of the fit. Note the last large peak
on the right in Fig. 4 and the Bezier segments that correspond to the upmost two
tiles in the IToS: Due to the constraints on monotonicity and start/end point
the curve essentially ignores the peak to approximate the remaining data best.
This is desired as the upmost tiles correspond to a smoothing level where the
peak no longer exists. The associated Bezier curve does not contain this peak
but still represent the original data well. This is quite different from a series we
would obtain by actually smoothing the data (features would be smeared out
and displaced).

The proposed time series representation is therefore as follows: Given a time
series x and its IToS. The Interval Tree of Bezier Segments (IToBS) rep-
resentation of x is a set V of tiles v = (t1, t4, s1, s2, y1, y2, t2, t3, σ) ∈ V , where
[t1, t4] denotes the temporal range of the tile, [s1, s2] the scale range (both from
the IToS) and [y1, y1, y2, y2] / [t1, t2, t3, t4] denote the parameters of the Bezier
curve that approximates x|v with standard deviation σ of the residuals. The
reason why the coefficients of Bv(·) require only the two values y1 and y2 will
be explained in Sect. 4.3. The definition of a tile in the IToBS as a 9-tuple is
convenient, but it is also highly redundant. Tiles v and w adjacent in time share
one point in time tv4 = tw1 and value yv2 = yw1 . For tiles v and w adjacent in
scale (w is child-node of v) we have sv2 = sw1 . The values t2, t3 will be discretized
and replaced by a code later (with a small number of possible values). When
serializing the IToBS to disk, we need to store only one time point, one scale,
one y-value, σ and the shape-code per tile.



13 / 0 13 / 1 13 / 2 13 / 3 13 / 4 13 / 5 13 / 6 13 / 7 13 / 8 13 / 9 13 / 10 13 / 11 13 / 12 13 / 13

12 / 0 12 / 1 12 / 2 12 / 3 12 / 4 12 / 5 12 / 6 12 / 7 12 / 8 12 / 9 12 / 10 12 / 11 12 / 12 12 / 13

11 / 0 11 / 1 11 / 2 11 / 3 11 / 4 11 / 5 11 / 6 11 / 7 11 / 8 11 / 9 11 / 10 11 / 11 11 / 12 11 / 13

10 / 0 10 / 1 10 / 2 10 / 3 10 / 4 10 / 5 10 / 6 10 / 7 10 / 8 10 / 9 10 / 10 10 / 11 10 / 12 10 / 13
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6 / 0 6 / 1 6 / 2 6 / 3 6 / 4 6 / 5 6 / 6 6 / 7 6 / 8 6 / 9 6 / 10 6 / 11 6 / 12 6 / 13

5 / 0 5 / 1 5 / 2 5 / 3 5 / 4 5 / 5 5 / 6 5 / 7 5 / 8 5 / 9 5 / 10 5 / 11 5 / 12 5 / 13

4 / 0 4 / 1 4 / 2 4 / 3 4 / 4 4 / 5 4 / 6 4 / 7 4 / 8 4 / 9 4 / 10 4 / 11 4 / 12 4 / 13

3 / 0 3 / 1 3 / 2 3 / 3 3 / 4 3 / 5 3 / 6 3 / 7 3 / 8 3 / 9 3 / 10 3 / 11 3 / 12 3 / 13

2 / 0 2 / 1 2 / 2 2 / 3 2 / 4 2 / 5 2 / 6 2 / 7 2 / 8 2 / 9 2 / 10 2 / 11 2 / 12 2 / 13

1 / 0 1 / 1 1 / 2 1 / 3 1 / 4 1 / 5 1 / 6 1 / 7 1 / 8 1 / 9 1 / 10 1 / 11 1 / 12 1 / 13
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Fig. 5. Monotonically increasing Bezier curves with parameters [0, 0, 1, 1]/[0, i
10
, 1 −

j
10
, 1]. For each spline the value of i/j is shown in the center. The dashed, red curves

indicate parameter configurations that lead to non-monotonic or non-functional curves.

4.2 Euclidean Tile Distance

The key idea of the tile distance (Sect. 3 and Fig. 3) was to rescale the content,
i.e. the corresponding time series segments which will now be represented by
Bezier segments, such that they fit into the same bounding box. We have not
yet decided which size of the bounding box we actually want to use. But for any
two functions f(t) and g(t) representing fitted segments, an affine transformation
of values leads to a linearly scaled Euclidean distance (area between curves):∫ t1

t0

|(a · f(t) + b)− (a · g(t) + b)| dt = |a| ·
∫ t1

t0

|f(t)− g(t)|dt

The same holds for an affine transformation of time (integration by substitution).
Thus, regardless of the bounding box we choose, whether we fit f to the original
frame of g, the other way round or any other bounding box, we convert distances
for different bounding boxes by applying linear scaling factors. So we determine
reference distances using [0, 1]2 as the default bounding box (and use them to
derive distances for any other bounding box).

We thus consider distances of Bezier segments rescaled to the unit square
only. Applying such an affine transformation (in value and time) to a
Bezier segment is simple: we have to apply the affine transformation to the
Bezier curve coefficients. To rescale a monotonically increasing Bezier curve
[t1, t2, t3, t4]/[y1, y1, y2, y2] to the unit square, we obtain the coefficients as
[0, τ2, τ3, 1] / [0, 0, 1, 1] with τ2 = t2

t4−t1 , τ3 = t3
t4−t1 . For a decreasing segment,



the value coefficients would be [1, 1, 0, 0]. From our intended application in Sect.
3 it makes only sense to compare tiles of the same orientation (both increas-
ing or both decreasing), so the value coefficients of both Bezier segments to be
compared will be either [0,0,1,1] or [1,1,0,0]. Switching between these two con-
figurations again corresponds to an affine value transformation 1− y, the curve
gets mirrored on the horizontal axis. The Euclidean distance between the curves
is thus unaffected by this mirroring (scaling factor 1), so whenever we want to
calculate the tile distance of two decreasing splines we could as well consider
their mirrored, increasing counterparts and obtain the same distance.

At this point we know that it is sufficient to consider distances in the unit
square for increasing curves. If we have efficient means to calculate tile distances
for this case, we can provide arbitrary tile distances for arbitrary bounding boxes.
While measuring Euclidean distance is a cheap operation on indexed time series
(as xi is aligned with yi), it is an expensive operation with Bezier curves, because
the temporal component Bt(τ) of tile v from series x is not necessarily aligned
with that of tile w from series y. Due to different cubic polynomials for tv and tw
in the temporal dimension, we first have to identify parameters τ ′ and τ ′′ such
that Btv (τ ′) and Btw(τ ′′) refer to the same point in time. We cannot afford to
perform such expensive operations whenever we need to calculate a tile distance
(it becomes a core operation in the similarity measure). We therefore suggest to
discretize the possible values of τ2 and τ3 (say, consider values 0, 0.05, . . . , 1) and
pre-calculate all possible tile distances offline. At a resolution of R = 0.05 we have
about 500 possible pairs of τ2/τ3, so a lookup table that stores the tile distances
between any two tiles consists of roughly 250.000 entries, which is small enough
to fit into main memory. From this lookup table we can immediately return the
distance of any two tiles on any chosen bounding box.

4.3 Determine the Bezier Segments

In this section we discuss how to obtain the Bezier parameters needed for the
IToBS. While piecewise monotone approximations have been investigated for
polynomials (e.g. [4]), this does not seem to be the case for Bezier curves.
We assume that a monotonic time series segment with observations s =
(xi, yi)1≤i≤n is given. We seek coefficients t,q ∈ R4 of a (cubic) Bezier curve
(Bt(τ), Bq(τ))τ∈[0,1] (cf. eq. (1)) to approximate s. First, we determine the Bezier
coefficients q = (q0, q1, q2, q3) for the value domain. We want to preserve the ex-
trema of the original function and thus require Bq(0) = y1 and Bq(1) = yn and
obtain q0 = y1 and q3 = yn. Furthermore we know that y1 and yn are the extrema
of the segment – so the gradient vanishes at t = 0 and t = 1: B′q(0) = 0 = B′q(1):

B′q(0) = 3(q1 − q0) = 0 ⇒ q1 = q0 (= y1)

B′q(1) = 3(q3 − q2) = 0 ⇒ q2 = q3 (= yn)

So q is fully determined as q = (y1, y1, yn, yn). (As already mentioned we have
no degrees of freedom to adopt the Bezier spline Bq(τ) to the data at hand.)



Second, we determine coefficients t = (t0, t1, t2, t3) for the time domain.
Similar arguments as above lead us quickly to t0 = x1 and t3 = xn. By means of
t1 and t2 we can adopt the shape of the Bezier curve to the time series segment.
As Bq(τ) is already fixed, we first identify a series τi such that Bq(τi) = yi. The
value τi may be found by solving a cubic equation or by a bisection method.
There is a solution to this equation because for all i we have yi ∈ Bq([0, 1]) =
[y1, yn]. To optimize the fit we now seek a vector t that warps the temporal
domain, that is, Bt(τi) approximates xi. So we deal with a regression problem
that minimizes

f(t|s) =
∑
i

(Bt(τi)− xi)2 (2)

where t has only two degrees of freedom left (t1 and t2). Introducing the abbre-
viations δij := ti − tj , i.e., t1 = t0 + δ10, t2 = t0 + δ10 + δ21, the optimal fit is
then obtained from the linear equation system (with unknowns δ10, δ21):

0 =
∑
i 3(τ4i − 2τ5i + τ6i )δ21 + 3(τ3i − 2τ4i + τ5i )δ10

+(τ5i − τ6i )δ30 + (τ2i − τ3i )t0 + (τ3i − τ2i )xi
0 =

∑
i 3(τ3i − 2τ4i + τ5i )δ21 + 3(τ2i − 2τ3i + τ4i )δ10

+(τ4i − τ5i )δ30 + (τi − τ2i )t0 + (τ2i − τi)xi

(3)

Functional Curves. The regression problem provides us the global minimizer
for the missing parameters δ10 and δ21, but the solution to the regression problem
may not fit our needs: In order to model a time series segment, the temporal com-
ponent Bt(τ) must be strictly increasing, otherwise the resulting Bezier spline
(Bt(τ), Bq(τ)) might not be functional (cf. red cases in Fig 5). Rather than
an unconstrained optimization we actually have to impose a constraint on the
monotonicity of Bt(τ) within [0, 1]. We require a non-negative first derivative

1

3
B′t(τ) = (δ30 − 3δ21) · τ2 + 2(δ21 − δ10) · τ + δ10 ≥ 0 for τ ∈ [0, 1].

We find the solution to this constrained problem by solving the unconstrained
problem first (cf. eq. (3)) and then, if it does not yield a monotonic Bt(τ), find
the minimizers of (2) among all boundary cases where B′t(τ) vanishes for some
τ ′ ∈ [0, 1]. From the continuity of B′t(τ) and the fact that it must not become
negative, we can conclude that either τ ′ has to be at the boundary of its valid
range [0, 1], that is τ ∈ {0, 1}, or B′t(τ

′) must be a saddle point.

From τ ∈ {0, 1} we can conclude (by straightforward considerations, dropped
due to lack of space) that either δ10 = 0, δ21 = δ30/3, or δ21 = δ30 − 2δ10, which
yields three linear regression problems with a single parameter only. In case
of a saddle point we can conclude δ221 = δ10δ30, which does unfortunately not
lead to a linear regression problem. Instead of solving a quadratic optimization
problem, we take the resolution at which the Bezier curves will be considered in
the lookup-table into account, so we simply explore the possible values (according
to the resolution R) for δ10, set δ21 =

√
δ10δ30 and finally pick the best boundary

solution. This is done for all time series to turn the raw series into the IToBS



representation, which is then stored to disk and for the subsequent operations
we do not access the raw data.

4.4 A Tile Distance to Mimic Perceived Similarity

We can conveniently lookup tile distances on arbirary bounding boxes, but to
employ it in other contexts we have to settle on a conrete distance. Trying
to mimic the human perception we take as much information into account as
provided by the IToBS. But it is heuristic in nature and many other definitions
are possible. The first aspect is the shape of both tiles: Let dUS(v, w) denote
the Euclidean distance between the tiles v and w in the unit square (retrieved
from a lookup-table). To include the goodness-of-fit of both approximations we
include their standard deviations σv + σw (as obtained in the unit square). As
the term dUS(v, w) + σv + σw is independent of the tile dimensions (projection
to the unit square), we choose a bounding box with the maximum of both tile
durations and the maximum of both value ranges. This ensures that longer
segments yield (potentially) larger distances than shorter segments and also
establishes symmetry (by taking the maximum extent of both tiles). By max∆t
we denote the maximum temporal extent of both tiles, analogously for min and
index y (value range) and s (scale). As already discussed, we obtain the distance
in this bounding box by multiplying with the extents of the box (max∆t,max∆y):

max∆t ·max∆y · (dUS(v, w) + σv + σw) (4)

So far we account for the shape and approximation quality. But after rescaling,
a flat and short segment may appear similar to a tall and long segment – but
visually we would not perceive them as similar. Therefore we include penalty
factors for differences in duration, vertical extent and stability, that is, their
persistence against smoothing in the scale space. The latter is an aspect of
similarity that is unique to multiscale approaches such as IToS. We penalize
distances by a factor of 2 if one segment is twice as long, tall, or important
(persistent) as the other:

TD(v, w) = max∆t ·max∆y · (dUS(v, w) + σv + σw) · max∆t
min∆t

· max∆y
min∆y

· max∆s
min∆s

4.5 Elastic Measure based on IToBS

Once we have settled on a tile distance, we finally approach the definition of a
distance for full time series. From a series x we obtain all of its tiles V x. (As
long as only one time series is involved in the discussion, we drop the superscript
x.) Based on the tiles we can build a graph G = (V,E) by connecting adjacent
tiles (we have an edge v → w, v, w ∈ V , iff tv4 = tw1 ). We define a subset VS ⊆ V
(resp. VE ⊆ V ) that contains all start-tiles (resp. end-tiles), that is, tiles which
do not have a predecessor (resp. successor) in the graph. In the example of Fig.
6, the interval tree of the series on the left (resp. bottom) consists of 7 (resp.
9) tiles. The graphs are superimposed on the interval tree. Nodes belonging to
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Fig. 6. Two series (left and bottom), represented by their interval tree and respective
graph (slope is color-coded). The matrix in the center encodes the assignment of nodes
from both graphs, a match of perceptions from both series is thus a path from the
bottom left to top right edge of the matrix.

VS (or VE) are connected to the virtual node S (or E). From these examples we
find two perception for the left series ((a0, a1, a2, a4) and (a0, a1, a2, a3, a5, a6))
and several for the bottom series (e.g. (b0, b2, b4, b7, b8)).

Among all perceptions of series x and y we want to identify those that lead
to the smallest overall accumulated tile distance. As with DTW this requires a
mapping m(·) of a tile vx from the perception of series x to a tile wy from a
perception of series y: m(vx) = wy. Unlike DTW we do not allow m(·) to skip
tiles. When perceiving all details (path near the bottom of the interval tree),
both series may not match structurally in the number of tiles: In Fig. 6 the
series x (left) contains a landmark at the end (peak at a5, a6) while the other
series y (bottom) does not. To perceive them as similar, we switch to a coarser
scale for x (a4 instead of a3, a5, a6). Finding the path through both graphs Gx

and Gy, such that the tiles in both sequences correspond to each other best,
corresponds to a structural comparison of the series.

The alignment-task is solved using dynamic programming (cf. Fig. 7), very
much in the fashion of DTW. The classic DTW solution uses a distance matrix
D[i, j] to store the lowest accumulated cost of a warping path that matches x|1:i



Require: IToBS of series x,y as graphs Gx = (V x, Ex) and Gy = (V y, Ey)
1: Sort nodes of V x and V y by their start point in time.
2: Instantiate associative 2D-arrays L[vx, wy], set all entries to +∞
3: Let L[vx, wy] = TD(vx, wy) for start tiles vx ∈ V x

S and wy ∈ V y
S

4: for all vx 6∈ V x
S in sort-order do

5: for all wy 6∈ V y
S in sort-order do

6: L[vx, wy] = TD(vx, wy) + min{L[rx, sy] | (rx, vx) ∈ Ex, (sy, wy) ∈ Ey};
7: end for
8: end for
9: find d = min{L[vx, wy] | vx ∈ V x

E , vy ∈ V y
E }; return d

Fig. 7. Dynamic Programming Solution.

to y|1:j . The subscripts refer to the time indices of the series. Now tiles take
the role of points – but it is not possible to match arbitrary tiles, they have to
have the same orientation and they must be adjacent in the graph. In Fig. 6
the hatched entries in the matrix denote illegal assignments due to incompatible
tile orientation. An associative array L plays the role of a distance matrix in
Fig. 7, line 2. To identify the minimal cost to reach an arbitrary pair (vx, wy) of
tiles we have to consider how these tiles were reached: We need a predecessor rx

of vx and a predecessor sy of wy. Among all possible predecessor-pairs (rx, sy)
leading to (vx, wy) we determine the one with minimal cost and add the tile
distance between vx and wy (line 6). We have to make sure that all predecessors
(rx, sy) have been evaluated earlier, which is easily achieved by sorting the tiles
by their start-point in time (line 1). A predecessor of a tile must end before the
new tile starts, so if we deal with a tile starting at t all possible predecessors
must have started at t′ < t and were processed earlier. Finally, the matching of
both series is complete if we reach the end of both series, so we find the minimal
cost at pairs (vx, wy) ∈ V x

E × V
y
E (line 9). The complexity of the algorithm is

O(n · m), n and m being the number of tiles in the resp. graph (rather than
number of points as in DTW). Only a fraction of the n ·m tile combinations will
be considered (cf. hatched elements of Fig. 6). The tile distances need not be
stored in D but may be calculated when needed as they are calculated in O(1)
thanks to the lookup-table of Sect. 4.2. We use the distance of Sect. 4.4, but the
algorithm in Fig. 7 does not depend on a particular tile distance. To deal with
series that start with different orientations (x starts only with increasing and y
only with decreasing segments) we include virtual tiles of opposite orientation
in VS and VE , which are considered as being of constant value y for distance
calculations (where y = y1 for virtual tiles in VS and y = yn in VE).

5 Evaluation

5.1 Sensitivity of Discretized Bezier Segments

The Bezier curves have been selected to keep the representation simple (poly-
nomial of degree 3) but still flexible enough to adapt to the data. To increase
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Fig. 8. Frequency of used shapes (as shown in Fig. 5) in
the Adiac and Plane dataset.

cor 1 2

50words 0.738 0.871
Adiac 0.979 0.975
Beef 0.828 0.985
GunPoint 0.907 0.909
Plane 0.797 0.942
ECG200 0.610 0.979
OSULeaf 0.908 0.965
SwedishLeaf 0.926 0.959

Fig. 9. Correlation of Dis-
tances: (1) raw vs BS dis-
tances, (2) raw vs BSN dis-
tances (cf. text).

efficiency, we consider only a discretized subset of all possible Bezier segments
(cf. Fig. 5). Is this setting sensitive enough to capture differences in time series?
The matrices of Fig. 8 show for each of the (discretized) segment types how often
they occur in a specific dataset (Adiac and Plane [3]) at a resolution of 0.05. We
can recognize that the frequency of segment types varies significantly in these
datasets and the IToBS can thus capture differences between sets of time series.

5.2 Approximation of Euclidean Distance

Next we consider the approximation quality by the Bezier segments. We have
calculated distances for valid pairs of tiles using (a) the Euclidean distance on the
original time series segments without any approximation [raw], (b) the Euclidean
distance using the approximated Bezier segments and the lookup table [BS] and
(c) the Euclidean distance from a lookup-table including the standard deviation
(as in eq. (4)) [BSN]. Figure 9 shows how these distances typically correlate for
some UCR datasets (cor. of (a) vs (b) in column 1, (a) vs (c) in column 2). The
results show the (expected) loss in approximation quality when switching from
the Euclidean distance on the raw data to the approximation by Bezier segments
as the approximation eliminates details (column 1). But when including the
approximation error in the tile distance the correlation coefficients increase and
may get very close to 1 (column 2).

5.3 Utility of Elastic Measure based on IToBS

We demonstrate the utility of the IToBS/elastic measure in the standard 1-
NN time series classification setting. We have performed cross-validated (CV)
experiments with datasets from the UCR repository [3]. Figure 11 shows how the
proposed approach (IToBS-D) compares against DTW [2] on two datasets. To
eliminate the effect of the sample size in k-fold CV (one fold is used as training
data, k − 1 folds for testing), experiments were run over a full range of values
for k. Both figures are examples where IToBS-D performs better than DTW for
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all k. Fig. 10 shows the Texas Sharp Shooter plot [1] to demonstrate that the
performance gain1 over DTW obtained on the training set (x-axis) correlates
with the gain for the test set (y-axis). Non-artificial UCR-datasets below 2 MB
size were included in this figure. The number of folds was chosen such that
the training set contained 5 examples from each class. For many cases near the
center both measures perform comparable, but the top right quadrant (IToBS-D
is better) contains more cases than the bottom left quadrant (DTW is better).
The best performance is obtained for datasets where series from different classes
have structural differences. If series are extremely similar across different classes,
as it is the case with a few spectrogram datasets, very tiny differences must be
exploited to distinguish the classes. These tiny differences may get lost in the
Bezier approximation.

Compression was not our interest in the first place. Using a simple serializa-
tion, series with little noise use between 1

3 and 1
2 of the original disk space. As

long as we store all tiny nodes of the IToBS, noisy series may use more than
twice as much disk space. Future work includes pruning of the IToBS.

6 Conclusions

Guided by the interpretability of time series similarity, we have employed the
extrema of time series, nicely summarized in an Interval Tree of Scale, to guide
the elastic matching of time series. We have thereby restricted the full flexibility
of dynamic time warping to meaningful, interpretable warping paths. Regard-
ing the value range, we allow for the same linear scaling of time series values

1 that is, how many times its accuracy is higher than that of DTW



as in the temporal domain. Different warping paths are motivated from the
multiscale structure of the series itself. To support such operations efficiently,
we approximate segments of the series (tiles of the interval tree) by monotone
Bezier segments, for which a look-up table of distances has been demonstrated to
provide sufficient accuracy. A first tentative elastic measure, based on this repre-
sentation, delivered very promising results compared to dynamic time warping.
Future work includes pruning of the IToBS and the use of subtrees (or subse-
quences of tiles) as the basis for elastic shapelet- or bag of word approaches that
directly connect to the visual perception.
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