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Abstract. Successful inventory management in retail entails accurate
demand forecasts for many weeks/months ahead. Forecasting models use
seasonality: recurring pattern of sales every year, to make this forecast. In
e-commerce setting, where the catalog of items is much larger than brick
and mortar stores and hence includes a lot of items with short history, it
is infeasible to compute seasonality for items individually. It is customary
in these cases to use ideas from factor analysis and express seasonality
by a few factors/basis vectors computed together for an entire assort-
ment of related items. In this paper, we demonstrate the effectiveness
of choosing vectors with disjoint support as basis for seasonality when
dealing with a large number of short time-series. We give theoretical re-
sults on computation of disjoint support factors that extend the state
of the art, and also discuss temporal regularization necessary to make it
work on walmart e-commerce dataset. Our experiments demonstrate a
marked improvement in forecast accuracy for items with short history.

1 Introduction

Seasonality refers to patterns in a time-series that repeat themselves every sea-
son. For example, retail sales always increase in November, unemployment drops
in December, temperature increases in summer. In general, one is interested in
finding the smooth periodic pattern underlying a long univariate time-series
which has data for many past seasons. This reduces to some form of regres-
sion of observation on the season, for e.g., day/week, as exemplified in a lot of
time-series literature [1–3].

In this paper, we will focus on finding the weekly seasonality of sales on
an annual basis. We focus on e-commerce, which is a decidedly different and
arguably more challenging task, because the assortment of items is larger and
more dynamic– this implies there is a large number of time-series and most of
them do not have enough data for even one year. This make the traditional
approach of regression infeasible, since we cannot estimate a 52 week seasonality
from, say only 6 weeks of sales. The problem in this domain is more suited to
factor analysis and matrix factorization techniques, which have been successfully
used for imputation in other scenarios with a lot of missing data [4]. In this
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approach, one computes instead a few orthogonal basis vectors, called seasonal
basis for an entire category of related items. Figure 1 illustrates the seasonal
basis of a certain group of items when computed on the online sales data over
52 weeks of the year. Seasonality for an item can be evaluated with a regression,
generally by a time-series forecasting model with time varying coefficients, on
the seasonal basis. We illustrate a simple forecasting model that incorporates
seasonal basis in (1). However, this regression can lead to unreliable results for
two reasons. First, in the span of a short time-series, individual seasonal basis
might not be orthogonal. For e.g., in Fig. 1, basis 2 and 3 from PCA have very
similar curve from week 20 to 35 and same with SPCA for weeks 35 to 52, which
makes it impossible to disambiguate between them if a time-series only had data
for those weeks. One solution is to work with fewer basis; but unless one always
works with one basis, there is no guarantee that they would be orthogonal for
every segment. This is a big issue when a vast majority of items being forecasted
don’t even have a year of data.

Another, a more intuitive problem, is that not all parts of the year are related
to each other. For an item, sales in February may have no relation to sales in
September, but may be related to sales in December. Hence, we should not be
modifying forecasts for the entire year based on the sales during a part, which
is what happens in general. Fortunately, both problems lead to one solution.
To solve the first problem, we enforce a stricter notion of orthogonality where
every segment of two vectors is orthogonal; it can be shown to be equivalent to
them having Disjoint Support(DS). Figure 1 illustrates DS-basis. They solve the
second problem as well by segmenting the year into different weeks which exhibit
a distinct behavior. However, with disjoint supports there is only one curve to
model the variation during any part of the year, which is not always true when
one considers a large group of possibly unrelated items. So, one way of viewing
DS-basis is as a strong regularizer imposed on a group of items which forces their
sales to follow one curve during the seasonal events. This is not recommended
for the entire catalog together, but for groups of related items in the catalog
hierarchy.

In this paper, we will study how to compute DS-basis, both with theoretical
results, and practical lessons learned in applying it at walmart e-commerce. We
show that DS-basis for a low rank matrix can be computed in polynomial time.
Our proof relies on bounding the number of regions of a a low rank hyperplane
arrangement. For general matrices, we show that the problem is NP-hard, with
a reduction from graph coloring. We also give a constant factor approximation
algorithm, and prove hardness of approximation results.

When applying this technique at Walmart E-Commerce, we observed multi-
ple anomalies in the basis computed, compared to our domain knowledge. This
is because real world datasets are noisy and there are many factors that lead
to variation in sales that cannot be accounted for. We propose certain temporal
regularizations that can overcome this noise, by exploiting the fact that our data
is a time-series. Computing the basis with these regularization entails learning
in Switching State Space Models which is often done with moment-matching
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Fig. 1. Seasonal factors computed with different methods on a group of items from
walmart-ecommerce. Notice how basis 2 and 3 from PCA have very similar curve from
week 20 to 35 and same with SPCA for weeks 35 to 52. This makes it impossible to
disambiguate between the two basis if a time-series only had data for those weeks.
This leads to unreliable estimate of seasonality and hence unreliable forecasts. Unless
one works with only one basis, this problem is inevitable; hence the notion of disjoint
support basis that lead to orthogonality for every segment. DS-basis only have one
non-zero component at a time– the curves sometimes seem to overlap as one basis goes
from zero to non-zero and another from non-zero to zero.

Kalman Filters [5]. We propose an alternative faster approach that leverages
forward-backward algorithm for estimation in HMM, to achieve the same accu-
racy, in less execution time.

Our experiments demonstrate that forecast accuracy is markedly improved
for items with short history. Further empirical evaluations are done on a synthetic
dataset for a more detailed comparison. This paper is organized as follows: Sect. 2
gives some background and discusses the related work, and we describe our
approach along with the computational complexity of the problem in Sect. 3, and
Sect. 4, which focuses on a more general problem with temporal regularizations.
Section 5 has the empirical evaluation of our approach conducted on walmart
e-commerce, and a synthetic data.

2 Background and Related Work

Related Work The general approach of estimating seasonality is by decom-
posing the time-series into mean, trend and seasonal components, see [6] for
an example. The seasonal component can be modeled as a cyclic/periodic com-
ponent in the form of a triginometric series. However, because of leap years,
seasonality in our setting is not the same as periodicity. However, it can still
be computed by a regression of observation with the week number– but as we
already pointed out this approach does not work for short series. One could still
use hierarchical regressions [7] commonly used in panel data– in this approach



we would use item catalog to specify a hierarchy of items, however this approach
does not scale well to large datasets we use. This is inherent to the method it-
self because of computations involving large covariance matrices. Also, generally
some sort of clustering is needed before applying these methods as described
in [8].

The application of forecasting to settings like ours is relatively new, but
the idea of seasonal factors is not new and has been investigated by others as
well. For e.g., [9, 10], explore Non-Negative Matrix Factorization(NMF), and
Principal Component Analysis(PCA) respectively. In this paper, we are focused
not on the particulars of whether factors be non-negative, or sparse or smooth;
instead we are proposing that they have disjoint support which is an orthogonal
idea that can be used along with each of these approaches. We build upon PCA
since it is the most common way of estimating factors.

Notation Given a vector v, we denote coordinate i by vi. For a matrix M ,
we denote row i and column j with M [i, j]; column i with mi. We say vectors
u, v have disjoint support iff ∀i, uivi = 0. The reason we are interested in them
is because they ensure orthogonality of arbitrary segments of u, v. For a natural
number n, [n] denotes the set {1, 2, . . . , n}.

Forecasting with Seasonal Basis Since this paper is about computing
seasonality, we won’t delve into the forecasting models, but we do want to il-
lustrate how seasonality is incorporated in forecasting to motivate the problem.
The following is a simple univariate local-level model which has a mean com-
ponent µ and a seasonality component that is expressed by seasonal basis that
form rows of H.

yt = µt + hTs(t)αt + εt εt ∼ N(0, σ2),

µt = µt−1 + ηt ηt ∼ N(0, λµσ
2),

αt = αt−1 + ωt ωt ∼ N(0, λωσ
2Ik)

(1)

where s(t) denotes the season at time t. For e.g., if we are making weekly forecasts
it will be between 1 to 52, for daily forecasts it would vary from 1 to 365. One
could add more components to the model like trend, and include price and
calendar effects. Furthermore, this could be generalized to a multivariate model.

Problem Statement Let Y be an n×p sales matrix, where p is the number
of seasons, for e.g. p = 52 in Fig. 1. We will assume that rows of Y are centered to
take out the effect of mean. Also, note that Y can have missing values. Our goal in
this paper is to express Y as WH, where W is an n×k matrix of basis coefficients,
and H is a k × p matrix whose rows have disjoint support and HHT = I, that
minimize ‖Y −WH‖2F , which is same as maximizing Tr

(
HY TY HT

)
. Note that

the constraint HHT = I is just for uniqueness; we could also enforce WTW = I
instead– depending on the algorithm one constraint is preferred over the other.
We will extend the problem further by adding some temporal constraints on
the rows of H in Sect. 4. k is typically a small number, and hence would be
assumed to be a bounded constant when stating complexity results throughout
this paper.



Input: Yn×p = Un×rVr×p, #factors
k

Output: W , H
Zr×k ← variables from a rk-D space

S ←
⋃

1≤i≤p
⋃

1≤j1<j2≤k{v
T
i zj1 ±

vTi zj2 = 0 }
r(S) ← regions of arrangement S
opt← 0
for regions ∇ ∈ r(S) do

Support(i)← argmaxj
(
vTi zj

)2
,

∀i ∈ [p]
Mj ← columns of Y with
support j, ∀j ∈ [k]

currOpt←
∑k
i=1 σ

2
1(Mi)

if currOpt > opt then
opt← currOpt
H ← right singular vectors
of Mi, i = 1..k

end

end

W ← Y HT

return W , H
Algorithm 1: Computing DS-basis
for a low rank matrix

Fig. 2. Consider functions 1.x2, 2.y2, 3.
(x+ y)2. The above arrangement of lines
partitions 2D-space into regions which are
annotated with 1/2/3 according to which
function is maximum in that region. The
lines are just f±g for each pair of functions
f2, g2.

3 Computing DS-Basis

We first discuss the low rank case and propose a polynomial time algorithm. The
algorithm can be used in general too by applying it on a low rank projection.
We then discuss the results for general matrices including NP-hardness and
approximation results. Finally, we show how these results can be extended if
basis need to be sparse.

3.1 DS-Basis for Low Rank Matrices

We first reformulate the problem from Sect. 2 into a form that depends only on
W , and not on the basis H. W.l.o.g, we assume ‖wi‖2 = 1,∀i ∈ [k]. Now, note
that if the ith-support is basis j, then Hj,i = wTj yi. Hence, it follows that the
optimal W can be found by maximizing:

p∑
i=1

max
((
wT1 yi

)2
, . . . ,

(
wTk yi

)2)
s.t. ‖wi‖2 = 1, i ∈ [k]. Now we use the fact that that Y is low rank to express
it as Y = UV , and replace W , nk variables, with variables Z = WTU , only kr



variables. We can then reformulate the objective as:

p∑
i=1

max
((
zT1 vi

)2
, . . . ,

(
zTk vi

)2)
(2)

maximization of a low-rank convex function over the unit sphere. A Polynomial
Time Approximation Algorithm(PTAS) for this problem is possible by iterating
over the unit sphere for Z, by discretizing it into grids of small size, and using
the property that the change in objective is bounded by ε2, for a perturbation in
Z of ε. This has been already discovered in [11], and similar approach has also
been used in [12] to maximize a class of quasi-convex functions. But in neither
of these cases, is an algorithm with polynomial running time independent of the
error ε still known. In this paper, we present such an approach, that can also
extend the result in [11] from PTAS to PTIME, and we hope can be extended
to more low rank convex maximization problems as in [12].

Algorithm 1 presents the algorithm for computing DS-basis of a low rank
matrix. We restate that k and the rank of Y are assumed to be small constants
in this section. Formally:

Theorem 1 (Computing DS-basis of a low rank matrix is in PTIME).
Given a matrix Y of rank r, we can compute DS-basis H of Y in time O

(
prk+4

)
3.2 DS-Basis for Arbitrary Matrices

Once we venture beyond low-rank matrices to arbitrary matrices, the problem
becomes NP-hard as we prove below.

Theorem 2 (Computing a DS-basis of even constant size is NP-hard).
Finding a DS-basis H that maximizes Tr

(
HY TY HT

)
s.t. HHT = Ik is NP-

hard for any fixed k ≥ 3.

In general, it would be good to know how close one could approximately solve
the problem for a general matrix. We give an incomplete answer by proving both
lower and upper bounds on the optimal hardness of approximation. It would be
great if the two matched so we knew how close an approximation is possible in
polynomial time, but we leave that as an open problem.

Theorem 3 (Approximating a DS-basis of size k). Let maxHTr(HY
TY HT )

be opt∗, where H is a DS-basis and HHT = Ik. Then opt∗, can be approximated
to a ratio 1/k in PTIME. Furthermore, unless P=NP, it cannot be approximated
to a ratio better than 1− 1/p in PTIME.

Implications for Sparse PCA. Algorithm 1 is very general in its scope, in that
it first shows that there are only a polynomial and not exponential number of
possible supports one needs to consider when looking for disjoint support of a low
rank matrix. Of course, given the support one still needs to find the basis, which
reduces to finding the dominant eigenvector of a low rank matrix. The framework



extends to solving for principal components with a particular constraint as well,
so long as the second stage is still tractable. In case of sparse pca, for instance,
one can find the principal component of a low rank matrix with either l0/l1
constraint in polynomial time [13, 14]. Hence the tractability results extend to
these cases as well.

4 Adding Temporal Regularization

As can be seen from Fig. 1, DS-basis sometimes look counterintuitive, when
the non-zero component switches between consecutive weeks of year for a short
period of time. In general, we expect the year to be divided into contiguous seg-
ments of weeks that form the support for a basis, and non-contiguous supports
are implausible. But in a noisy real-world dataset like ours, it can be hard to get
to the optimal solution due to the presence of multiple outliers and other noise.
To counter the noise, we enforce this domain knowledge via a prior/regularizer
over the simple gaussian factor analysis approach as follows. We model the sup-
port using a Hidden Markov Model(HMM) that encourages consecutive time-
periods to have similar support. However, we also have to account for the fact
that our data is a time-series. This means we expect our basis curves to be
smooth and not change too much from one time point to another.

yt = wxtHxt,t + εt εt ∼ N
(
0, σ2I

)
Pr (xt|xt−1) = ρ1xt=xt−1 + (1−ρ)/(k−1)1xt 6=xt−1

ht = ht−1 + ηt ηt ∼ N
(
0, λσ2I

) (3)

These two regularization work against each other. Regularization on the support
indicator xt tries to put consecutive seasons in the same support– this is tuned
with the parameter ρ, if it is 1/k, supports can change arbitrarily between time
points, while if ρ = 1, consecutive weeks must have the same support leading
to only one non-zero basis. There is also a penalty on the difference in basis h
between consecutive weeks, controlled by parameter λ– higher λ means lower
penalty, while λ = 0 forces h to be constant. The seasonality and segmentation
achieved with these regularizations look more natural, and as we will show in
Sect. 5, lead to better forecast accuracy as well. However, because the consecutive
supports are correlated, an approach like Algo. 1 is no longer applicable.

Equation 3 is a special case of Switching State Space Models(SSSM) which
combine ideas from HMM and State Space Models(SSM) to allow for both dis-
crete and continuous hidden states. Unlike SSM, computing the distribution of
H given W has been recognized as intractable in SSSM [15]. The hardness of
computing posterior state distribution stems from the fact that at each time
point, we have k possibilities corresponding to the values of xt. The final poste-
rior thus is a mixture of kp gaussians. Various approximations have been used in
the literature to deal with this intractability. The most common is to modify the
kalman filter by merging the k gaussians into 1 gaussian at each step [5, 16,17]:
the resulting filter is called GPB(1). This leads to a natural alternating mini-
mization scheme, which we call AM-GPB(1), summarized in Algo. 2: compute



H given W using GPB(1), and W given H using regression. Time complexity
per iteration can be shown to be O

(
npk4

)
, dominated by the time for GPB(1).

However, GPB(1)-smoothing is expensive and the execution cost builds up
because of the repeated calls involved with the alternating minimization involved.
We also pursue an alternative way in which we put more emphasis on finding
states x instead. Observe that given support x, we can find basis i as the first
eigenvector of Y (i)TY (i) +L/λ, where Y (i) is the matrix with columns of support
i from Y , and L is a tridiagonal matrix with 2 on diagonal, except the first and
last, and -1 off-diagonal. Also, once we know H, W is just Y HT . Now, we use W
to find x using the forward backward algorithm for state estimation in HMM.
Note that this step completely ignores H, and just finds optimal x for the given
W . In other words, while GPB(1) smoothing focuses more on estimating H, this
approach puts more emphasis on x. The time complexity per iteration now is
O
(
npk + p3

)
. We call it AM-HMM, summarized in Algo. 3, and it also leads to

a faster execution time as we will demonstrate empirically.

5 Empirical Evaluation

In this section, we will look at the impact of DS-basis on forecast accuracy in a
real-world dataset, and also also explore the robustness and performance of the
algorithms proposed in this paper on a synthetic dataset. Our implementation
is in C++ and R, and experiments are conducted on a MacBook Pro with 16GB
memory and 2.5 GHz Intel i7 processor.

5.1 E-Commerce Data

In this section, we use sales data from Walmart E-Commerce. 20 groups of items
from different sections of the catalog are selected, with sizes varying from about
2K to 10K, for a total of around 50K items. We should point out that these
groups were not manually selected; they are actual groups of items assigned to
a particular category in the catalogue. In that sense, the items they contain are
representative of an e-commerce assortment. We will compare the forecasts from
local level model in (1) with k = 3, λµ = λω = 0.1. For forecasts, we choose six
different weeks of year distributed throughout year. For each week, we forecasted
six weeks ahead. Our benchmark for comparison are seasonal factors generated
using PCA. To compare how a new forecast f compares to benchmark g, we look
at the metric of percentage improvement offered by f over g: |f−s|−|g−s|/|f−s|,
where s is the sales. We compute DS-basis for each group using Algo. 11, and
DS-basis(temporal) with temporal regularization is computed using AM-HMM.

Figure 3 shows that there is a stark difference in comparison when it comes to
items with less than a year of history and items with long history, with median
improvement of 20-30% possible with DS-basis. This is in accordance with the

1 We don’t explore the full search space but use randomization to run within a time
budget



Input: Sales Matrix Y (n× p),
initial W = W 0, parameters
k, σ, ρ, λ

Output: W , H
W ←W 0

while H has not converged do
// Compute H,x given W
Compute states xt, ht with
GPB(1) smoothing [5, 17]

Normalize each row of H to
norm 1

// Compute W given H

W ← Y HT

end
return W ,H

Algorithm 2: AM-GPB(1) algo-
rithm to compute DS-basis

Input: Sales Matrix Y (n× p),
initial W = W 0,parameters
k, σ, ρ, λ

Output: W , H
W ←W 0

while H has not converged do
// Compute x given W
Compute xt using Viterbi
algorithm

// Compute H given x
for i ∈ [k] do

s← {j | xj = i} // columns

with support i

Ys ← matrix with columns
yj∀j ∈ s

L←



1 −1 0 0 . . . 0

−1 2 −1
. . .

. . .
...

0 −1 2 −1
. . . 0

0
. . .

. . .
. . .

. . . 0
...

. . .
. . . −1 2 −1

0 . . . 0 0 −1 1


hi ← first eigenvector of
Y Ts Y + L/λ

end
// Compute W given H

W ← Y HT

end
return W ,H

Algorithm 3: AM-HMM algorithm
to compute DS-basis

argument made in Sect. 1 that having orthogonal basis is not sufficient when
the time-series involved are short, since it can be hard to disambiguate between
different factors in a short time-span. But not only do we see improvements
for short time-series, we don’t experience any penalty for long time-series when
using DS-basis(temporal) which is encouraging since it means the approach can
be deployed for all items and not restricted to short series.

Figure 4 describes in detail how the improvement offered by DS-basis(temporal)
varies with length of history a time-series has. We only plot the average improve-
ment for items with given weeks of history to minimize the clutter of the graph
resulting from too many points. Figure 4 shows, if we ignore the beginning, till
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Fig. 3. Median Percent Improvement in
error for items with less than or more than
one year of sales history by using DS-basis
over principal components. Improvement
is |f−s|−|g−s|/|f−s|, where s is sales, f, g
are forecasts using seasonality from PCA
and DS-basis. DS-basis was computed us-
ing Algo. 1, and DS-basis(temporal) with
temporal regularization is computed using
Algo. 3
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Fig. 4. Average Percent Improvement in
error for items with a certain week of sales
data; the shaded region shows the 95%
confidence interval. This shows significant
improvements for items with short time-
series. Improvement is |f−s|−|g−s|/|f−s|,
where s is sales, f, g are forecasts using
seasonality from PCA and DS-basis com-
puted by AM-HMM respectively.

say 10 weeks, there is a clear and marked improvement for items with less than
60 weeks of sales, often about 10-25%. For items with less than 10 weeks of
history, initialization is the dominating factor, and performance is very volatile.
From 50 to 150, most of the times improvement is positive, but after 150 weeks,
there is no significant improvement.

5.2 Synthetic Data

In this section, we will evaluate our algorithms for computing DS-basis, and
see if they are effective in finding the underlying basis and observation in the
presence of noise and outliers, assuming that the underlying basis does have
disjoint support. For this, given 0 ≤ f ≤ 1, we generate a matrix M of dimension
1000×52 as M = WH+ε+µ, where W is 1000×3 matrix of N (0, 1), and H is a
3× 52 smooth disjoint support factor where factors vary from one time-point to
another by N (0, 0.1). ε is N (0, 1) error and µ is outlier noise: with probability f
it is N (0, 10), else it is zero. Now to simulate the missing data, we divide rows of
M into 50 groups and from each group remove the first 0, 1, . . . , 49 entries. Note
that M is then about 50% sparse, but in a stair-case fashion since we assume
the data is time-series and hence the missing data is at the beginning and not at
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random. We want to see now if one can recover true data: WH. We will look the
Root Mean Square Error(rmse); because of the construction of M , an algorithm
that can recover the true H can achieve an rmse of 1 from WH on average,
because of ε. But that requires being able to work through missing data and
outlier noise µ.

Figure 5 shows the rmse achieved by different methods as the fraction of
outliers f is varied. We see that AM-HMM is remarkably robust to noise and
can recover the true basis even with many outliers. AM-GPB(1) is also close
but as f is increased, it does slightly worse in recovering the basis. PCA does
not work well at all in this scenario, and computing DS-basis without temporal
regularization performs much worse as f increases. This illustrates why in real-
world data with many outliers having temporal regularization is crucial when
we know the underlying basis is smooth.

Figure 6 compares the execution time of AM-HMM and AM-GPB(1) as the
rows of M are varied from 1K to 10K. Even though asymptotically, the two
approaches have linear running time, in our experience AM-HMM is the only
one that scales well for large groups, and we can see this in the rapidly increasing
difference as we approach 10K items in the plot.
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